Applying machine learning to study fluid mechanics

SL Brunton - Acta Mechanica Sinica, 2021 - Springer
This paper provides a short overview of how to use machine learning to build data-driven
models in fluid mechanics. The process of machine learning is broken down into five …

Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control

U Fasel, JN Kutz, BW Brunton… - Proceedings of the …, 2022 - royalsocietypublishing.org
Sparse model identification enables the discovery of nonlinear dynamical systems purely
from data; however, this approach is sensitive to noise, especially in the low-data limit. In this …

SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics

K Kaheman, JN Kutz… - Proceedings of the …, 2020 - royalsocietypublishing.org
Accurately modelling the nonlinear dynamics of a system from measurement data is a
challenging yet vital topic. The sparse identification of nonlinear dynamics (SINDy) algorithm …

Pysindy: a python package for the sparse identification of nonlinear dynamics from data

BM de Silva, K Champion, M Quade… - arXiv preprint arXiv …, 2020 - arxiv.org
PySINDy is a Python package for the discovery of governing dynamical systems models
from data. In particular, PySINDy provides tools for applying the sparse identification of …

Weak SINDy for partial differential equations

DA Messenger, DM Bortz - Journal of Computational Physics, 2021 - Elsevier
Abstract Sparse Identification of Nonlinear Dynamics (SINDy) is a method of system
discovery that has been shown to successfully recover governing dynamical systems from …

Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data

K Kaheman, SL Brunton, JN Kutz - Machine Learning: Science …, 2022 - iopscience.iop.org
The sparse identification of nonlinear dynamics (SINDy) is a regression framework for the
discovery of parsimonious dynamic models and governing equations from time-series data …

Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data

H Vaddireddy, A Rasheed, AE Staples, O San - Physics of Fluids, 2020 - pubs.aip.org
We put forth a modular approach for distilling hidden flow physics from discrete and sparse
observations. To address functional expressiblity, a key limitation of the black-box machine …

Parsimony as the ultimate regularizer for physics-informed machine learning

JN Kutz, SL Brunton - Nonlinear Dynamics, 2022 - Springer
Data-driven modeling continues to be enabled by modern machine learning algorithms and
deep learning architectures. The goals of such efforts revolve around the generation of …

Benchmarking sparse system identification with low-dimensional chaos

AA Kaptanoglu, L Zhang, ZG Nicolaou, U Fasel… - Nonlinear …, 2023 - Springer
Sparse system identification is the data-driven process of obtaining parsimonious differential
equations that describe the evolution of a dynamical system, balancing model complexity …

Sparse nonlinear models of chaotic electroconvection

Y Guan, SL Brunton… - Royal Society Open …, 2021 - royalsocietypublishing.org
Convection is a fundamental fluid transport phenomenon, where the large-scale motion of a
fluid is driven, for example, by a thermal gradient or an electric potential. Modelling …