Deep learning for electroencephalogram (EEG) classification tasks: a review

A Craik, Y He, JL Contreras-Vidal - Journal of neural engineering, 2019 - iopscience.iop.org
Objective. Electroencephalography (EEG) analysis has been an important tool in
neuroscience with applications in neuroscience, neural engineering (eg Brain–computer …

Deep learning-based electroencephalography analysis: a systematic review

Y Roy, H Banville, I Albuquerque… - Journal of neural …, 2019 - iopscience.iop.org
Context. Electroencephalography (EEG) is a complex signal and can require several years
of training, as well as advanced signal processing and feature extraction methodologies to …

A survey on explainable artificial intelligence (xai): Toward medical xai

E Tjoa, C Guan - IEEE transactions on neural networks and …, 2020 - ieeexplore.ieee.org
Recently, artificial intelligence and machine learning in general have demonstrated
remarkable performances in many tasks, from image processing to natural language …

Sleeptransformer: Automatic sleep staging with interpretability and uncertainty quantification

H Phan, K Mikkelsen, OY Chén, P Koch… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
Background: Black-box skepticism is one of the main hindrances impeding deep-learning-
based automatic sleep scoring from being used in clinical environments. Methods: Towards …

LUCID: A practical, lightweight deep learning solution for DDoS attack detection

R Doriguzzi-Corin, S Millar… - … on Network and …, 2020 - ieeexplore.ieee.org
Distributed Denial of Service (DDoS) attacks are one of the most harmful threats in today's
Internet, disrupting the availability of essential services. The challenge of DDoS detection is …

XSleepNet: Multi-view sequential model for automatic sleep staging

H Phan, OY Chén, MC Tran, P Koch… - … on Pattern Analysis …, 2021 - ieeexplore.ieee.org
Automating sleep staging is vital to scale up sleep assessment and diagnosis to serve
millions experiencing sleep deprivation and disorders and enable longitudinal sleep …

A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series

S Chambon, MN Galtier, PJ Arnal… - … on Neural Systems …, 2018 - ieeexplore.ieee.org
Sleep stage classification constitutes an important preliminary exam in the diagnosis of
sleep disorders. It is traditionally performed by a sleep expert who assigns to each 30 s of …

Contrastive representation learning for electroencephalogram classification

MN Mohsenvand, MR Izadi… - Machine Learning for …, 2020 - proceedings.mlr.press
Interpreting and labeling human electroencephalogram (EEG) is a challenging task
requiring years of medical training. We present a framework for learning representations …

U-time: A fully convolutional network for time series segmentation applied to sleep staging

M Perslev, M Jensen, S Darkner… - Advances in Neural …, 2019 - proceedings.neurips.cc
Neural networks are becoming more and more popular for the analysis of physiological time-
series. The most successful deep learning systems in this domain combine convolutional …

Automated sleep scoring: A review of the latest approaches

L Fiorillo, A Puiatti, M Papandrea, PL Ratti… - Sleep medicine …, 2019 - Elsevier
Clinical sleep scoring involves a tedious visual review of overnight polysomnograms by a
human expert, according to official standards. It could appear then a suitable task for modern …