Feature weighting methods: A review

I Niño-Adan, D Manjarres, I Landa-Torres… - Expert Systems with …, 2021 - Elsevier
In the last decades, a wide portfolio of Feature Weighting (FW) methods have been
proposed in the literature. Their main potential is the capability to transform the features in …

A novel approach to attribute reduction based on weighted neighborhood rough sets

M Hu, ECC Tsang, Y Guo, D Chen, W Xu - Knowledge-Based Systems, 2021 - Elsevier
Neighborhood rough sets based attribute reduction, as a common dimension reduction
method, has been widely used in machine learning and data mining. Each attribute has the …

Аналіз багатовимірних даних за описом у формі множини компонент

ВО Гороховатський, ІС Творошенко - 2022 - openarchive.nure.ua
Анотація У монографії розвиваються структурні технології аналізу багатовимірних
даних в інтелектуальних системах. Основна увага приділяється ансамблевим моделям …

CGFFCM: Cluster-weight and Group-local Feature-weight learning in Fuzzy C-Means clustering algorithm for color image segmentation

AG Oskouei, M Hashemzadeh, B Asheghi… - Applied Soft …, 2021 - Elsevier
The fuzzy c-means (FCM) algorithm is a popular method for data clustering and image
segmentation. However, the main problem of this algorithm is that it is very sensitive to the …

Low-rank local tangent space embedding for subspace clustering

T Deng, D Ye, R Ma, H Fujita, L Xiong - Information Sciences, 2020 - Elsevier
Subspace techniques have gained much attention for their remarkable efficiency in
representing high-dimensional data, in which sparse subspace clustering (SSC) and low …

Fuzzy subspace clustering noisy image segmentation algorithm with adaptive local variance & non-local information and mean membership linking

T Wei, X Wang, X Li, S Zhu - Engineering Applications of Artificial …, 2022 - Elsevier
Abstract The Fuzzy C-means (FCM) clustering algorithm is an effective method for image
segmentation. Non-local spatial information considers more redundant information of the …

Enhancements of evidential c-means algorithms: a clustering framework via feature-weight learning

Z Liu, H Qiu, T Senapati, M Lin, L Abualigah… - Expert Systems with …, 2025 - Elsevier
As a core paradigm of the evidential clustering algorithm, evidential c-means (ECM) offers a
more flexible credal partition to characterize uncertainty and imprecision in cluster …

Feature-Weighted Fuzzy Clustering Methods: An Experimental Review

AG Oskouei, N Samadi, S Khezri, AN Moghaddam… - Neurocomputing, 2024 - Elsevier
Soft clustering, a widely utilized method in data analysis, offers a versatile and flexible
strategy for grouping data points. Most soft clustering algorithms assume that all the features …

A feature-weighted suppressed possibilistic fuzzy c-means clustering algorithm and its application on color image segmentation

H Yu, L Jiang, J Fan, S Xie, R Lan - Expert Systems with Applications, 2024 - Elsevier
The possibilistic fuzzy c-means clustering (PFCM) algorithm is a hybridization of possibilistic
c-means clustering (PCM) and fuzzy c-means clustering (FCM) algorithms. However, there …

Using fuzzy clustering in structural methods of image classification

VО Gorokhovatskyi, IS Tvoroshenko… - Telecommunications …, 2020 - dl.begellhouse.com
The results of image classification problem solving using structural methods in computer
vision systems are presented. The technology for introducing fuzzy clustering on a set of …