Quantitative bounds for Gowers uniformity of the Möbius and von Mangoldt functions

T Tao, J Teräväinen - Journal of the European Mathematical Society, 2023 - ems.press
We establish quantitative bounds on the UkŒN Gowers norms of the Möbius function and
the von Mangoldt function ƒ for all k, with error terms of the shape O.. log log N/c/. As a …

On Elliott's conjecture and applications

O Klurman, AP Mangerel, J Teräväinen - arXiv preprint arXiv:2304.05344, 2023 - arxiv.org
Let $ f:\mathbb {N}\to\mathbb {D} $ be a multiplicative function. Under the merely necessary
assumption that $ f $ is non-pretentious (in the sense of Granville and Soundararajan), we …

Higher uniformity of arithmetic functions in short intervals I. All intervals

K Matomäki, X Shao, T Tao, J Teräväinen - Forum of Mathematics, Pi, 2023 - cambridge.org
We study higher uniformity properties of the Möbius function $\mu $, the von Mangoldt
function $\Lambda $, and the divisor functions $ d_k $ on short intervals $(X, X+ H] $ with …

On the local Fourier uniformity problem for small sets

A Kanigowski, M Lemańczyk, FK Richter… - International …, 2024 - academic.oup.com
We consider vanishing properties of exponential sums of the Liouville function of the form
where. The case corresponds to the local-Fourier uniformity conjecture of Tao, a central …

On arithmetic functions orthogonal to deterministic sequences

A Kanigowski, J Kułaga-Przymus, M Lemańczyk… - Advances in …, 2023 - Elsevier
We prove the equivalence of Sarnak's conjecture on Möbius orthogonality with a
Kolmogorov type property conjectured by Veech for Furstenberg systems of the Möbius …

Expansion, divisibility and parity

HA Helfgott, M Radziwiłł - arXiv preprint arXiv:2103.06853, 2021 - arxiv.org
Let $\mathbf {P}\subset [H_0, H] $ be a set of primes, where $\log H_0\geq (\log
H)^{2/3+\epsilon} $. Let $\mathscr {L}=\sum_ {p\in\mathbf {P}} 1/p $. Let $ N $ be such that …

Furstenberg systems of pretentious and MRT multiplicative functions

N Frantzikinakis, M Lemańczyk, T de la Rue - arXiv preprint arXiv …, 2023 - arxiv.org
We prove structural results for measure preserving systems, called Furstenberg systems,
naturally associated with bounded multiplicative functions. We show that for all pretentious …

Phase relations and pyramids

MN Walsh - arXiv preprint arXiv:2304.09792, 2023 - arxiv.org
arXiv:2304.09792v1 [math.NT] 19 Apr 2023 Page 1 arXiv:2304.09792v1 [math.NT] 19 Apr
2023 PHASE RELATIONS AND PYRAMIDS MIGUEL N. WALSH Abstract. We develop tools …

Stability under scaling in the local phases of multiplicative functions

MN Walsh - arXiv preprint arXiv:2310.07873, 2023 - arxiv.org
We introduce a strategy to tackle some known obstructions of current approaches to the
Fourier uniformity conjecture. Assuming GRH, we then show the conjecture holds for …

On the Hardy–Littlewood–Chowla conjecture on average

JD Lichtman, J Teräväinen - Forum of Mathematics, Sigma, 2022 - cambridge.org
On the Hardy–Littlewood–Chowla conjecture on average Page 1 Forum of Mathematics, Sigma
(2022), Vol. 10:e57 1–17 doi:10.1017/fms.2022.54 RESEARCH ARTICLE On the …