Graph neural networks for materials science and chemistry

P Reiser, M Neubert, A Eberhard, L Torresi… - Communications …, 2022 - nature.com
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …

[HTML][HTML] A compact review of molecular property prediction with graph neural networks

O Wieder, S Kohlbacher, M Kuenemann… - Drug Discovery Today …, 2020 - Elsevier
As graph neural networks are becoming more and more powerful and useful in the field of
drug discovery, many pharmaceutical companies are getting interested in utilizing these …

Recipe for a general, powerful, scalable graph transformer

L Rampášek, M Galkin, VP Dwivedi… - Advances in …, 2022 - proceedings.neurips.cc
We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer
with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph …

How powerful are spectral graph neural networks

X Wang, M Zhang - International conference on machine …, 2022 - proceedings.mlr.press
Abstract Spectral Graph Neural Network is a kind of Graph Neural Network (GNN) based on
graph signal filters. Some models able to learn arbitrary spectral filters have emerged …

Digress: Discrete denoising diffusion for graph generation

C Vignac, I Krawczuk, A Siraudin, B Wang… - arXiv preprint arXiv …, 2022 - arxiv.org
This work introduces DiGress, a discrete denoising diffusion model for generating graphs
with categorical node and edge attributes. Our model utilizes a discrete diffusion process …

Pure transformers are powerful graph learners

J Kim, D Nguyen, S Min, S Cho… - Advances in Neural …, 2022 - proceedings.neurips.cc
We show that standard Transformers without graph-specific modifications can lead to
promising results in graph learning both in theory and practice. Given a graph, we simply …

Do transformers really perform badly for graph representation?

C Ying, T Cai, S Luo, S Zheng, G Ke… - Advances in neural …, 2021 - proceedings.neurips.cc
The Transformer architecture has become a dominant choice in many domains, such as
natural language processing and computer vision. Yet, it has not achieved competitive …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Rethinking graph transformers with spectral attention

D Kreuzer, D Beaini, W Hamilton… - Advances in …, 2021 - proceedings.neurips.cc
In recent years, the Transformer architecture has proven to be very successful in sequence
processing, but its application to other data structures, such as graphs, has remained limited …

Gemnet: Universal directional graph neural networks for molecules

J Gasteiger, F Becker… - Advances in Neural …, 2021 - proceedings.neurips.cc
Effectively predicting molecular interactions has the potential to accelerate molecular
dynamics by multiple orders of magnitude and thus revolutionize chemical simulations …