Everything is connected: Graph neural networks

P Veličković - Current Opinion in Structural Biology, 2023 - Elsevier
In many ways, graphs are the main modality of data we receive from nature. This is due to
the fact that most of the patterns we see, both in natural and artificial systems, are elegantly …

A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

Accurate structure prediction of biomolecular interactions with AlphaFold 3

J Abramson, J Adler, J Dunger, R Evans, T Green… - Nature, 2024 - nature.com
The introduction of AlphaFold 21 has spurred a revolution in modelling the structure of
proteins and their interactions, enabling a huge range of applications in protein modelling …

Generalized biomolecular modeling and design with RoseTTAFold All-Atom

R Krishna, J Wang, W Ahern, P Sturmfels, P Venkatesh… - Science, 2024 - science.org
Deep-learning methods have revolutionized protein structure prediction and design but are
presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which …

Diffdock: Diffusion steps, twists, and turns for molecular docking

G Corso, H Stärk, B Jing, R Barzilay… - arXiv preprint arXiv …, 2022 - arxiv.org
Predicting the binding structure of a small molecule ligand to a protein--a task known as
molecular docking--is critical to drug design. Recent deep learning methods that treat …

Torsional diffusion for molecular conformer generation

B Jing, G Corso, J Chang… - Advances in Neural …, 2022 - proceedings.neurips.cc
Molecular conformer generation is a fundamental task in computational chemistry. Several
machine learning approaches have been developed, but none have outperformed state-of …

Benchmarking AlphaFold‐enabled molecular docking predictions for antibiotic discovery

F Wong, A Krishnan, EJ Zheng, H Stärk… - Molecular systems …, 2022 - embopress.org
Efficient identification of drug mechanisms of action remains a challenge. Computational
docking approaches have been widely used to predict drug binding targets; yet, such …

Structure-based drug design with equivariant diffusion models

A Schneuing, C Harris, Y Du, K Didi… - Nature Computational …, 2024 - nature.com
Abstract Structure-based drug design (SBDD) aims to design small-molecule ligands that
bind with high affinity and specificity to pre-determined protein targets. Generative SBDD …

Tankbind: Trigonometry-aware neural networks for drug-protein binding structure prediction

W Lu, Q Wu, J Zhang, J Rao, C Li… - Advances in neural …, 2022 - proceedings.neurips.cc
Illuminating interactions between proteins and small drug molecules is a long-standing
challenge in the field of drug discovery. Despite the importance of understanding these …

Structure-based drug design with geometric deep learning

C Isert, K Atz, G Schneider - Current Opinion in Structural Biology, 2023 - Elsevier
Abstract Structure-based drug design uses three-dimensional geometric information of
macromolecules, such as proteins or nucleic acids, to identify suitable ligands. Geometric …