[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges

M Abdar, F Pourpanah, S Hussain, D Rezazadegan… - Information fusion, 2021 - Elsevier
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …

A comprehensive survey on robust image watermarking

W Wan, J Wang, Y Zhang, J Li, H Yu, J Sun - Neurocomputing, 2022 - Elsevier
With the rapid development and popularity of the Internet, multimedia security has become a
general essential concern. Especially, as manipulation of digital images gets much easier …

Machine learning and deep learning in smart manufacturing: The smart grid paradigm

T Kotsiopoulos, P Sarigiannidis, D Ioannidis… - Computer Science …, 2021 - Elsevier
Industry 4.0 is the new industrial revolution. By connecting every machine and activity
through network sensors to the Internet, a huge amount of data is generated. Machine …

[HTML][HTML] Maintenance optimization in industry 4.0

L Pinciroli, P Baraldi, E Zio - Reliability Engineering & System Safety, 2023 - Elsevier
This work reviews maintenance optimization from different and complementary points of
view. Specifically, we systematically analyze the knowledge, information and data that can …

Data science and big data analytics: A systematic review of methodologies used in the supply chain and logistics research

H Jahani, R Jain, D Ivanov - Annals of Operations Research, 2023 - Springer
Data science and big data analytics (DS &BDA) methodologies and tools are used
extensively in supply chains and logistics (SC &L). However, the existing insights are …

Process systems engineering–the generation next?

EN Pistikopoulos, A Barbosa-Povoa, JH Lee… - Computers & Chemical …, 2021 - Elsevier
Abstract Process Systems Engineering (PSE) is the scientific discipline of integrating scales
and components describing the behavior of a physicochemical system, via mathematical …

[HTML][HTML] Emerging information and communication technologies for smart energy systems and renewable transition

N Zhao, H Zhang, X Yang, J Yan, F You - Advances in Applied Energy, 2023 - Elsevier
Since the energy sector is the dominant contributor to global greenhouse gas emissions, the
decarbonization of energy systems is crucial for climate change mitigation. Two major …

Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review

A Shoeibi, M Khodatars, M Jafari, N Ghassemi… - Information …, 2023 - Elsevier
Brain diseases, including tumors and mental and neurological disorders, seriously threaten
the health and well-being of millions of people worldwide. Structural and functional …

Renewable energy-powered semi-closed greenhouse for sustainable crop production using model predictive control and machine learning for energy management

G Hu, F You - Renewable and Sustainable Energy Reviews, 2022 - Elsevier
Renewable energy consumption in agriculture is ascending, catering to the food needs of
the rising population and protecting the environment. Maximizing renewable energy usage …

Look before you leap: An exploratory study of uncertainty measurement for large language models

Y Huang, J Song, Z Wang, H Chen, L Ma - arXiv preprint arXiv:2307.10236, 2023 - arxiv.org
The recent performance leap of Large Language Models (LLMs) opens up new
opportunities across numerous industrial applications and domains. However, erroneous …