Evaluating recommender systems: survey and framework

E Zangerle, C Bauer - ACM Computing Surveys, 2022 - dl.acm.org
The comprehensive evaluation of the performance of a recommender system is a complex
endeavor: many facets need to be considered in configuring an adequate and effective …

Reinforcement learning based recommender systems: A survey

MM Afsar, T Crump, B Far - ACM Computing Surveys, 2022 - dl.acm.org
Recommender systems (RSs) have become an inseparable part of our everyday lives. They
help us find our favorite items to purchase, our friends on social networks, and our favorite …

Bias and debias in recommender system: A survey and future directions

J Chen, H Dong, X Wang, F Feng, M Wang… - ACM Transactions on …, 2023 - dl.acm.org
While recent years have witnessed a rapid growth of research papers on recommender
system (RS), most of the papers focus on inventing machine learning models to better fit …

Explainability in deep reinforcement learning

A Heuillet, F Couthouis, N Díaz-Rodríguez - Knowledge-Based Systems, 2021 - Elsevier
A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature
relevance techniques to explain a deep neural network (DNN) output or explaining models …

[HTML][HTML] Deep reinforcement learning in recommender systems: A survey and new perspectives

X Chen, L Yao, J McAuley, G Zhou, X Wang - Knowledge-Based Systems, 2023 - Elsevier
In light of the emergence of deep reinforcement learning (DRL) in recommender systems
research and several fruitful results in recent years, this survey aims to provide a timely and …

[HTML][HTML] Advances and challenges in conversational recommender systems: A survey

C Gao, W Lei, X He, M de Rijke, TS Chua - AI open, 2021 - Elsevier
Recommender systems exploit interaction history to estimate user preference, having been
heavily used in a wide range of industry applications. However, static recommendation …

Artificial intelligence in recommender systems

Q Zhang, J Lu, Y Jin - Complex & Intelligent Systems, 2021 - Springer
Recommender systems provide personalized service support to users by learning their
previous behaviors and predicting their current preferences for particular products. Artificial …

Knowledge graph convolutional networks for recommender systems

H Wang, M Zhao, X Xie, W Li, M Guo - The world wide web conference, 2019 - dl.acm.org
To alleviate sparsity and cold start problem of collaborative filtering based recommender
systems, researchers and engineers usually collect attributes of users and items, and design …

Reinforcement knowledge graph reasoning for explainable recommendation

Y Xian, Z Fu, S Muthukrishnan, G De Melo… - Proceedings of the 42nd …, 2019 - dl.acm.org
Recent advances in personalized recommendation have sparked great interest in the
exploitation of rich structured information provided by knowledge graphs. Unlike most …

Towards long-term fairness in recommendation

Y Ge, S Liu, R Gao, Y Xian, Y Li, X Zhao, C Pei… - Proceedings of the 14th …, 2021 - dl.acm.org
As Recommender Systems (RS) influence more and more people in their daily life, the issue
of fairness in recommendation is becoming more and more important. Most of the prior …