Algebra and geometry through Hamiltonian systems
AT Fomenko, A Konyaev - Continuous and Distributed Systems: Theory …, 2013 - Springer
Hamiltonian systems are considered to be the prime tool of classical and quantum
mechanics. The proper investigation of such systems usually requires deep results from …
mechanics. The proper investigation of such systems usually requires deep results from …
Топологический анализ псевдоевклидова волчка Эйлера при особых значениях параметров
МК Алтуев, ВА Кибкало - Математический сборник, 2023 - mathnet.ru
Изучается аналог волчка Эйлера в случае псевдоевклидова пространства. В случае
равенства нулю либо геометрического интеграла, либо интеграла площадей были …
равенства нулю либо геометрического интеграла, либо интеграла площадей были …
The spatial problem of 2 bodies on a sphere. Reduction and stochasticity
In this paper, we consider in detail the 2-body problem in spaces of constant positive
curvature S 2 and S 3. We perform a reduction (analogous to that in rigid body dynamics) …
curvature S 2 and S 3. We perform a reduction (analogous to that in rigid body dynamics) …
Noncompact bifurcations of integrable dynamic systems
DA Fedoseev, AT Fomenko - Journal of Mathematical Sciences, 2020 - Springer
In the theory of integrable Hamiltonian systems, an important role is played by the study of
Liouville foliations and bifurcations of their leaves. In the compact case, the problem is …
Liouville foliations and bifurcations of their leaves. In the compact case, the problem is …
Orbital Dynamics, Chaotic Orbits and Jacobi Elliptic Functions
RA El-Nabulsi, W Anukool - The Journal of the Astronautical Sciences, 2023 - Springer
Bertrand theorem's states that, among central-force potentials with bound orbits, there are
only two types of central-force scalar potentials with the property that all bound orbits are …
only two types of central-force scalar potentials with the property that all bound orbits are …
Keplerian dynamics on the Heisenberg group and elsewhere
R Montgomery, C Shanbrom - … , Mechanics, and Dynamics: The Legacy of …, 2015 - Springer
Posing Kepler's problem of motion around a fixed “sun” requires the geometric mechanician
to choose a metric and a Laplacian. The metric provides the kinetic energy. The fundamental …
to choose a metric and a Laplacian. The metric provides the kinetic energy. The fundamental …
Scattering invariants in Euler's two-center problem
N Martynchuk, HR Dullin, K Efstathiou… - Nonlinearity, 2019 - iopscience.iop.org
The problem of two fixed centers was introduced by Euler as early as in 1760. It plays an
important role both in celestial mechanics and in the microscopic world. In the present paper …
important role both in celestial mechanics and in the microscopic world. In the present paper …
Mechanical systems with closed orbits on manifolds of revolution
EA Kudryavtseva, DA Fedoseev - Sbornik: Mathematics, 2015 - iopscience.iop.org
We study natural mechanical systems describing the motion of a particle on a two-
dimensional Riemannian manifold of revolution in the field of a central smooth potential. We …
dimensional Riemannian manifold of revolution in the field of a central smooth potential. We …
A proof of Bertrand's theorem using the theory of isochronous potentials
A Proof of Bertrand’s Theorem Using the Theory of Isochronous Potentials | SpringerLink Skip
to main content Advertisement SpringerLink Log in Menu Find a journal Publish with us Search …
to main content Advertisement SpringerLink Log in Menu Find a journal Publish with us Search …
Механические системы с замкнутыми орбитами на многообразиях вращения
ЕА Кудрявцева, ДА Федосеев - Математический сборник, 2015 - mathnet.ru
Исследуются натуральные механические системы, описывающие движение частицы
по двумерному риманову многообразию вращения в поле центрального гладкого …
по двумерному риманову многообразию вращения в поле центрального гладкого …