Multi-Peak and Propagation Behavior of M-Shape Solitons in (2 + 1)-Dimensional Integrable Schwarz-Korteweg-de Vries Problem

S Ahmed, AR Seadawy, STR Rizvi, U Raza - Fractal and Fractional, 2023 - mdpi.com
This paper examines the propagation of M-shape solitons and their interactions with kink
waves to the (2+ 1)-dimensional integrable Schwarz-Korteweg-de Vries (ISKdV) problem by …

Conservation laws and exact solutions of a Generalized Benjamin–Bona–Mahony–Burgers equation

MS Bruzón, TM Garrido, R De la Rosa - Chaos, Solitons & Fractals, 2016 - Elsevier
The concept of nonlinear self-adjointness given by Ibragimov is applied to a Generalized
Benjamin–Bona–Mahony–Burgers equation. Then, a nonlinear self-adjoint classification …

[HTML][HTML] Exploring multi-soliton patterns, bifurcation analysis, and chaos in (2+ 1) dimensions: A study on nonlinear dynamics

ZA Alhussain - Ain Shams Engineering Journal, 2024 - Elsevier
This study explores the intrinsic characteristics of the (2+ 1)-dimensional Schwarz-Korteweg-
de Vries equation used to describe shallow water waves. The multiple solitons are …

[HTML][HTML] Computational simulations; Propagation behavior of the Riemann wave interacting with the long wave

MMA Khater - Journal of Ocean Engineering and Science, 2022 - Elsevier
The analytical solutions to the (2+ 1)-dimensional integrable Schwarz-Korteweg-de Vries
(SKdV) problem are investigated in this article. To get solitary wave formulae such as …

Darboux transformation and soliton solutions of the (2+ 1)-dimensional Schwarz–Korteweg–de Vries equation

X Li, M Zhang - Modern Physics Letters B, 2020 - World Scientific
In this paper, we deduce the (2+ 1)-dimensional Schwarz–Korteweg–de Vries equation from
two (1+ 1)-dimensional equations. Based on the resulting Lax pairs, we present its N-fold …

Mathematical modeling and component generalization of -dimensional Schwarz–Kortweg–de Vries model in shallow water waves

F Shehzad, AR Seadawy, S Ahmed… - Modern Physics Letters …, 2024 - World Scientific
This work employs the sub-ODE method to compute new soliton solutions for the component
generalization of (2+ 1)-dimensional Schwarz–Kortweg–de Vries (SKdV) equation in …

Analytic investigation of the (2+ 1)-dimensional Schwarzian Korteweg–de Vries equation for traveling wave solutions

İ Aslan - Applied mathematics and computation, 2011 - Elsevier
By means of the two distinct methods, the Exp-function method and the extended (G′/G)-
expansion method, we successfully performed an analytic study on the (2+ 1)-dimensional …

Computational and Numerical Solutions for (2+ 1)‐Dimensional Integrable Schwarz–Korteweg–de Vries Equation with Miura Transform

RAM Attia, SH Alfalqi, JF Alzaidi, MMA Khater… - …, 2020 - Wiley Online Library
This paper investigates the analytical, semianalytical, and numerical solutions of the (2+ 1)–
dimensional integrable Schwarz–Korteweg–de Vries (SKdV) equation. The extended …

The (2+ 1)‐dimensional Schwarzian Korteweg–de Vries equation and its generalizations with discrete Lax matrices

W Liu, C Cao, X Yang, X Xu - Mathematical Methods in the Applied … - Wiley Online Library
By using the discrete Lax matrices corresponding to Q 1 (0) Q1 (0) and Q 1 (δ) Q1\left
(δ\right) in the Adler–Bobenko–Suris list of quadrilateral lattice equations, we establish …

Reductions of PDEs to first order ODEs, symmetries and symbolic computation

J Ramírez, JL Romero, C Muriel - Communications in Nonlinear Science …, 2015 - Elsevier
For ordinary differential equations which are polynomial in the dependent variable and its
derivatives, two methods are provided to find, if possible, reductions to first-order ordinary …