Medical visual question answering: A survey

Z Lin, D Zhang, Q Tao, D Shi, G Haffari, Q Wu… - Artificial Intelligence in …, 2023 - Elsevier
Abstract Medical Visual Question Answering (VQA) is a combination of medical artificial
intelligence and popular VQA challenges. Given a medical image and a clinically relevant …

Deep long-tailed learning: A survey

Y Zhang, B Kang, B Hooi, S Yan… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Deep long-tailed learning, one of the most challenging problems in visual recognition, aims
to train well-performing deep models from a large number of images that follow a long-tailed …

Balanced contrastive learning for long-tailed visual recognition

J Zhu, Z Wang, J Chen, YPP Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
Real-world data typically follow a long-tailed distribution, where a few majority categories
occupy most of the data while most minority categories contain a limited number of samples …

Long-tailed visual recognition with deep models: A methodological survey and evaluation

Y Fu, L Xiang, Y Zahid, G Ding, T Mei, Q Shen, J Han - Neurocomputing, 2022 - Elsevier
In the real world, large-scale datasets for visual recognition typically exhibit a long-tailed
distribution, where only a few classes contain adequate samples but the others have (much) …

Fine-grained image analysis with deep learning: A survey

XS Wei, YZ Song, O Mac Aodha, J Wu… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer
vision and pattern recognition, and underpins a diverse set of real-world applications. The …

Simple copy-paste is a strong data augmentation method for instance segmentation

G Ghiasi, Y Cui, A Srinivas, R Qian… - Proceedings of the …, 2021 - openaccess.thecvf.com
Building instance segmentation models that are data-efficient and can handle rare object
categories is an important challenge in computer vision. Leveraging data augmentations is a …

Parametric contrastive learning

J Cui, Z Zhong, S Liu, B Yu… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
In this paper, we propose Parametric Contrastive Learning (PaCo) to tackle long-tailed
recognition. Based on theoretical analysis, we observe supervised contrastive loss tends to …

Targeted supervised contrastive learning for long-tailed recognition

T Li, P Cao, Y Yuan, L Fan, Y Yang… - Proceedings of the …, 2022 - openaccess.thecvf.com
Real-world data often exhibits long tail distributions with heavy class imbalance, where the
majority classes can dominate the training process and alter the decision boundaries of the …

Long-tailed recognition via weight balancing

S Alshammari, YX Wang… - Proceedings of the …, 2022 - openaccess.thecvf.com
In the real open world, data tends to follow long-tailed class distributions, motivating the well-
studied long-tailed recognition (LTR) problem. Naive training produces models that are …

Long-tailed classification by keeping the good and removing the bad momentum causal effect

K Tang, J Huang, H Zhang - Advances in neural information …, 2020 - proceedings.neurips.cc
As the class size grows, maintaining a balanced dataset across many classes is challenging
because the data are long-tailed in nature; it is even impossible when the sample-of-interest …