Medical visual question answering: A survey
Abstract Medical Visual Question Answering (VQA) is a combination of medical artificial
intelligence and popular VQA challenges. Given a medical image and a clinically relevant …
intelligence and popular VQA challenges. Given a medical image and a clinically relevant …
Deep long-tailed learning: A survey
Deep long-tailed learning, one of the most challenging problems in visual recognition, aims
to train well-performing deep models from a large number of images that follow a long-tailed …
to train well-performing deep models from a large number of images that follow a long-tailed …
Balanced contrastive learning for long-tailed visual recognition
Real-world data typically follow a long-tailed distribution, where a few majority categories
occupy most of the data while most minority categories contain a limited number of samples …
occupy most of the data while most minority categories contain a limited number of samples …
Long-tailed visual recognition with deep models: A methodological survey and evaluation
In the real world, large-scale datasets for visual recognition typically exhibit a long-tailed
distribution, where only a few classes contain adequate samples but the others have (much) …
distribution, where only a few classes contain adequate samples but the others have (much) …
Fine-grained image analysis with deep learning: A survey
Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer
vision and pattern recognition, and underpins a diverse set of real-world applications. The …
vision and pattern recognition, and underpins a diverse set of real-world applications. The …
Simple copy-paste is a strong data augmentation method for instance segmentation
Building instance segmentation models that are data-efficient and can handle rare object
categories is an important challenge in computer vision. Leveraging data augmentations is a …
categories is an important challenge in computer vision. Leveraging data augmentations is a …
Parametric contrastive learning
In this paper, we propose Parametric Contrastive Learning (PaCo) to tackle long-tailed
recognition. Based on theoretical analysis, we observe supervised contrastive loss tends to …
recognition. Based on theoretical analysis, we observe supervised contrastive loss tends to …
Targeted supervised contrastive learning for long-tailed recognition
Real-world data often exhibits long tail distributions with heavy class imbalance, where the
majority classes can dominate the training process and alter the decision boundaries of the …
majority classes can dominate the training process and alter the decision boundaries of the …
Long-tailed recognition via weight balancing
S Alshammari, YX Wang… - Proceedings of the …, 2022 - openaccess.thecvf.com
In the real open world, data tends to follow long-tailed class distributions, motivating the well-
studied long-tailed recognition (LTR) problem. Naive training produces models that are …
studied long-tailed recognition (LTR) problem. Naive training produces models that are …
Long-tailed classification by keeping the good and removing the bad momentum causal effect
As the class size grows, maintaining a balanced dataset across many classes is challenging
because the data are long-tailed in nature; it is even impossible when the sample-of-interest …
because the data are long-tailed in nature; it is even impossible when the sample-of-interest …