The asymptotic redundancy of Bayes rules for Markov chains

K Atteson - IEEE Transactions on Information Theory, 1999 - ieeexplore.ieee.org
We derive the asymptotics of the redundancy of Bayes rules for Markov chains of fixed order
over a finite alphabet, extending the work of Barron and Clarke (1990) on independent and …

Properties of Jeffreys mixture for Markov sources

J Takeuchi, T Kawabata… - IEEE transactions on …, 2012 - ieeexplore.ieee.org
We discuss the properties of Jeffreys mixture for a Markov model. First, we show that a
modified Jeffreys mixture asymptotically achieves the minimax coding regret for universal …

[图书][B] Complexity reduction of the context-tree weighting algorithm: A study for KPN research

FMJ Willems, TJ Tjalkens - 1997 - sps.tue.nl
This report contains the results of a study that was performed by the Information and
Communication Theory Group of Eindhoven University for KPN Research in Leidschendam …

Characterization of the Bayes estimator and the MDL estimator for exponential families

J Takeuchi - IEEE Transactions on Information Theory, 1997 - ieeexplore.ieee.org
We analyze the relationship between a minimum description length (MDL) estimator
(posterior mode) and a Bayes estimator for exponential families. We show the following …

[PDF][PDF] Properties of Jeffreys mixture for Markov sources

J Takeuchi, T Kawabata, AR Barron - def, 2001 - researchgate.net
We discuss the properties of Jeffreys mixture for general FSMX model (a certain class of
Markov sources [11]). First, we show that modified Jeffreys mixture asymptotically achieves …

Redundancy of the Krichevsky–Trofimov estimator with a finite window for a Markov source

T Kawabata, N Tasaki - … and Communications in Japan (Part III …, 2000 - Wiley Online Library
Abstract The Krichevsky–Trofimov estimator can be implemented as an arithmetic data
compressor based on a finite window. We analyze the redundancy of this estimator for the …

マルコフ情報源に対する有限窓Krichevsky-Trofimov 推定量の冗長度

川端勉, 田崎尚久 - 電子情報通信学会論文誌 A, 1999 - search.ieice.org
Krichevsky と Trofimov により提案された予測確率推定量は, 有限長の窓に基づいた
推定量に修正することができ, これを用いて非定常な情報源にも適したデータ圧縮アルゴリズムを …

[PDF][PDF] 確率的コンプレキシティとJeffreys 混合予測戦略

竹内純一 - 1998 年情報論的学習理論ワークショップ予稿集, 1998 - me.inf.kyushu-u.ac.jp
We review the notion of Rissanen's stochastic complexity and the method of modified
Jeffreys mixtures for achieving the stochastic complexity. The stochastic complexity is …

[PDF][PDF] Markov モデルの指数曲率とJeffreys 混合予測

竹内純一, 川端勉 - 第7 回情報論的学習理論ワークショップ予稿集 …, 2004 - researchgate.net
We consider the problem of sequential prediction for classes of Markov sources and their
geometrical structures. A class of Markov sources defined by a context tree (tree model) is …

マルコフ情報源に対する有限窓Laplace 推定量の冗長度解析

川端勉, 渡辺太一 - 電子情報通信学会論文誌 A, 2001 - search.ieice.org
算術符号を用いた無ひずみデータ圧縮においては, 次文字の確率予測が重要である.
確率予測法として冗長度解析などの理論的研究が進んでいるものに Krichevski-Trofimov …