Federated learning review: Fundamentals, enabling technologies, and future applications

S Banabilah, M Aloqaily, E Alsayed, N Malik… - Information processing & …, 2022 - Elsevier
Federated Learning (FL) has been foundational in improving the performance of a wide
range of applications since it was first introduced by Google. Some of the most prominent …

Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges

ETM Beltrán, MQ Pérez, PMS Sánchez… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
In recent years, Federated Learning (FL) has gained relevance in training collaborative
models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the …

Blockchain-based federated learning for securing internet of things: A comprehensive survey

W Issa, N Moustafa, B Turnbull, N Sohrabi… - ACM Computing …, 2023 - dl.acm.org
The Internet of Things (IoT) ecosystem connects physical devices to the internet, offering
significant advantages in agility, responsiveness, and potential environmental benefits. The …

Blockchain-empowered federated learning: Challenges, solutions, and future directions

J Zhu, J Cao, D Saxena, S Jiang, H Ferradi - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning is a privacy-preserving machine learning technique that trains models
across multiple devices holding local data samples without exchanging them. There are …

Federated learning for internet of things: A comprehensive survey

DC Nguyen, M Ding, PN Pathirana… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …

A survey on federated learning for resource-constrained IoT devices

A Imteaj, U Thakker, S Wang, J Li… - IEEE Internet of Things …, 2021 - ieeexplore.ieee.org
Federated learning (FL) is a distributed machine learning strategy that generates a global
model by learning from multiple decentralized edge clients. FL enables on-device training …

Federated learning meets blockchain in edge computing: Opportunities and challenges

DC Nguyen, M Ding, QV Pham… - IEEE Internet of …, 2021 - ieeexplore.ieee.org
Mobile-edge computing (MEC) has been envisioned as a promising paradigm to handle the
massive volume of data generated from ubiquitous mobile devices for enabling intelligent …

A survey on security and privacy of federated learning

V Mothukuri, RM Parizi, S Pouriyeh, Y Huang… - Future Generation …, 2021 - Elsevier
Federated learning (FL) is a new breed of Artificial Intelligence (AI) that builds upon
decentralized data and training that brings learning to the edge or directly on-device. FL is a …

Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems

OA Wahab, A Mourad, H Otrok… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The communication and networking field is hungry for machine learning decision-making
solutions to replace the traditional model-driven approaches that proved to be not rich …

Blockchain meets metaverse and digital asset management: A comprehensive survey

VT Truong, L Le, D Niyato - Ieee Access, 2023 - ieeexplore.ieee.org
Envisioned to be the next-generation Internet, the metaverse has been attracting enormous
attention from both the academia and industry. The metaverse can be viewed as a 3D …