Bayesian statistics and modelling

R van de Schoot, S Depaoli, R King, B Kramer… - Nature Reviews …, 2021 - nature.com
Bayesian statistics is an approach to data analysis based on Bayes' theorem, where
available knowledge about parameters in a statistical model is updated with the information …

Hands-on Bayesian neural networks—A tutorial for deep learning users

LV Jospin, H Laga, F Boussaid… - IEEE Computational …, 2022 - ieeexplore.ieee.org
Modern deep learning methods constitute incredibly powerful tools to tackle a myriad of
challenging problems. However, since deep learning methods operate as black boxes, the …

Federated learning on non-IID data: A survey

H Zhu, J Xu, S Liu, Y Jin - Neurocomputing, 2021 - Elsevier
Federated learning is an emerging distributed machine learning framework for privacy
preservation. However, models trained in federated learning usually have worse …

An empirical survey of data augmentation for time series classification with neural networks

BK Iwana, S Uchida - Plos one, 2021 - journals.plos.org
In recent times, deep artificial neural networks have achieved many successes in pattern
recognition. Part of this success can be attributed to the reliance on big data to increase …

Machine learning and algorithmic fairness in public and population health

V Mhasawade, Y Zhao, R Chunara - Nature Machine Intelligence, 2021 - nature.com
Until now, much of the work on machine learning and health has focused on processes
inside the hospital or clinic. However, this represents only a narrow set of tasks and …

A comparison of full information maximum likelihood and multiple imputation in structural equation modeling with missing data.

T Lee, D Shi - Psychological Methods, 2021 - psycnet.apa.org
This article compares two missing data procedures, full information maximum likelihood
(FIML) and multiple imputation (MI), to investigate their relative performances in relation to …

A gentle introduction to reinforcement learning and its application in different fields

M Naeem, STH Rizvi, A Coronato - IEEE access, 2020 - ieeexplore.ieee.org
Due to the recent progress in Deep Neural Networks, Reinforcement Learning (RL) has
become one of the most important and useful technology. It is a learning method where a …

[图书][B] Computer age statistical inference, student edition: algorithms, evidence, and data science

B Efron, T Hastie - 2021 - books.google.com
The twenty-first century has seen a breathtaking expansion of statistical methodology, both
in scope and influence.'Data science'and'machine learning'have become familiar terms in …

The role of big data and predictive analytics in retailing

ET Bradlow, M Gangwar, P Kopalle, S Voleti - Journal of retailing, 2017 - Elsevier
The paper examines the opportunities in and possibilities arising from big data in retailing,
particularly along five major data dimensions—data pertaining to customers, products …

Blockchain-based two-stage federated learning with non-IID data in IoMT system

Z Lian, Q Zeng, W Wang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
The Internet of Medical Things (IoMT) has a bright future with the development of smart
mobile devices. Information technology is also leading changes in the healthcare industry …