Machine learning-driven credit risk: a systemic review

S Shi, R Tse, W Luo, S D'Addona, G Pau - Neural Computing and …, 2022 - Springer
Credit risk assessment is at the core of modern economies. Traditionally, it is measured by
statistical methods and manual auditing. Recent advances in financial artificial intelligence …

Machine learning methods in smart lighting toward achieving user comfort: a survey

AG Putrada, M Abdurohman, D Perdana… - IEEE access, 2022 - ieeexplore.ieee.org
Smart lighting has become a universal smart product solution, with global revenues of up to
US 5.9 billion by 2021. Six main factors drive the technology: light-emitting diode (LED) …

A neural network ensemble with feature engineering for improved credit card fraud detection

E Esenogho, ID Mienye, TG Swart, K Aruleba… - IEEE …, 2022 - ieeexplore.ieee.org
Recent advancements in electronic commerce and communication systems have
significantly increased the use of credit cards for both online and regular transactions …

A two-stage hybrid credit risk prediction model based on XGBoost and graph-based deep neural network

J Liu, S Zhang, H Fan - Expert Systems with Applications, 2022 - Elsevier
The credit risk prediction technique is an indispensable financial tool for measuring the
default probability of credit applicants. With the rapid development of machine learning and …

Combining autoregressive integrated moving average with Long Short-Term Memory neural network and optimisation algorithms for predicting ground water level

ZS Khozani, FB Banadkooki, M Ehteram… - Journal of Cleaner …, 2022 - Elsevier
The groundwater resources are the essential sources for irrigation and agriculture
management. Forecasting groundwater levels (GWL) for the current and future periods is an …

A deep learning ensemble with data resampling for credit card fraud detection

ID Mienye, Y Sun - IEEE Access, 2023 - ieeexplore.ieee.org
Credit cards play an essential role in today's digital economy, and their usage has recently
grown tremendously, accompanied by a corresponding increase in credit card fraud …

A machine learning approach combining expert knowledge with genetic algorithms in feature selection for credit risk assessment

PZ Lappas, AN Yannacopoulos - Applied Soft Computing, 2021 - Elsevier
Most credit scoring algorithms are designed with the assumption to be executed in an
environment characterized by an automatic processing of credit applications, without …

Consumer credit risk assessment: A review from the state-of-the-art classification algorithms, data traits, and learning methods

X Zhang, L Yu - Expert Systems with Applications, 2024 - Elsevier
Credit risk assessment is a crucial element in credit risk management. With the extensive
research on consumer credit risk assessment in recent decades, the abundance of literature …

A novel ensemble feature selection method by integrating multiple ranking information combined with an SVM ensemble model for enterprise credit risk prediction in …

G Yao, X Hu, G Wang - Expert Systems with Applications, 2022 - Elsevier
Enterprise credit risk prediction in the supply chain context is an important step for decision
making and early credit crisis warnings. Improving the prediction performance of this task is …

An improved and random synthetic minority oversampling technique for imbalanced data

G Wei, W Mu, Y Song, J Dou - Knowledge-based systems, 2022 - Elsevier
Imbalanced data learning has become a major challenge in data mining and machine
learning. Oversampling is an effective way to re-achieve the balance by generating new …