Scientific discovery in the age of artificial intelligence

H Wang, T Fu, Y Du, W Gao, K Huang, Z Liu… - Nature, 2023 - nature.com
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment
and accelerate research, helping scientists to generate hypotheses, design experiments …

[HTML][HTML] Computational and artificial intelligence-based methods for antibody development

J Kim, M McFee, Q Fang, O Abdin, PM Kim - Trends in Pharmacological …, 2023 - cell.com
Due to their high target specificity and binding affinity, therapeutic antibodies are currently
the largest class of biotherapeutics. The traditional largely empirical antibody development …

Evolutionary-scale prediction of atomic-level protein structure with a language model

Z Lin, H Akin, R Rao, B Hie, Z Zhu, W Lu, N Smetanin… - Science, 2023 - science.org
Recent advances in machine learning have leveraged evolutionary information in multiple
sequence alignments to predict protein structure. We demonstrate direct inference of full …

Robust deep learning–based protein sequence design using ProteinMPNN

J Dauparas, I Anishchenko, N Bennett, H Bai… - Science, 2022 - science.org
Although deep learning has revolutionized protein structure prediction, almost all
experimentally characterized de novo protein designs have been generated using …

[HTML][HTML] Illuminating protein space with a programmable generative model

JB Ingraham, M Baranov, Z Costello, KW Barber… - Nature, 2023 - nature.com
Three billion years of evolution has produced a tremendous diversity of protein molecules,
but the full potential of proteins is likely to be much greater. Accessing this potential has …

Generalized biomolecular modeling and design with RoseTTAFold All-Atom

R Krishna, J Wang, W Ahern, P Sturmfels, P Venkatesh… - Science, 2024 - science.org
Deep-learning methods have revolutionized protein structure prediction and design but are
presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which …

Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures

S Luo, Y Su, X Peng, S Wang… - Advances in Neural …, 2022 - proceedings.neurips.cc
Antibodies are immune system proteins that protect the host by binding to specific antigens
such as viruses and bacteria. The binding between antibodies and antigens is mainly …

[PDF][PDF] Language models of protein sequences at the scale of evolution enable accurate structure prediction

Z Lin, H Akin, R Rao, B Hie, Z Zhu, W Lu… - BioRxiv, 2022 - biorxiv.org
Large language models have recently been shown to develop emergent capabilities with
scale, going beyond simple pattern matching to perform higher level reasoning and …

Progen2: exploring the boundaries of protein language models

E Nijkamp, JA Ruffolo, EN Weinstein, N Naik, A Madani - Cell systems, 2023 - cell.com
Attention-based models trained on protein sequences have demonstrated incredible
success at classification and generation tasks relevant for artificial-intelligence-driven …

Hallucinating symmetric protein assemblies

BIM Wicky, LF Milles, A Courbet, RJ Ragotte… - Science, 2022 - science.org
Deep learning generative approaches provide an opportunity to broadly explore protein
structure space beyond the sequences and structures of natural proteins. Here, we use deep …