Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare

Z Jia, X Xu, D Zhu, Y Zheng - Progress in Materials Science, 2023 - Elsevier
Trauma-and disease-related skeletal defects and illnesses are plaguing millions of people
especially in an ageing globe. Recently, the convergence of additive manufacturing (AM) …

Three-dimensional (3D) printed scaffold and material selection for bone repair

L Zhang, G Yang, BN Johnson, X Jia - Acta biomaterialia, 2019 - Elsevier
Critical-sized bone defect repair remains a substantial challenge in clinical settings and
requires bone grafts or bone substitute materials. However, existing biomaterials often do …

From shape to function: the next step in bioprinting

R Levato, T Jungst, RG Scheuring, T Blunk… - Advanced …, 2020 - Wiley Online Library
Abstract In 2013, the “biofabrication window” was introduced to reflect the processing
challenge for the fields of biofabrication and bioprinting. At that time, the lack of printable …

A definition of bioinks and their distinction from biomaterial inks

J Groll, JA Burdick, DW Cho, B Derby, M Gelinsky… - …, 2018 - iopscience.iop.org
Biofabrication aims to fabricate biologically functional products through bioprinting or
bioassembly (Groll et al 2016 Biofabrication 8 013001). In biofabrication processes, cells are …

Strategies for 3D bioprinting of spheroids: A comprehensive review

D Banerjee, YP Singh, P Datta, V Ozbolat, A O'Donnell… - Biomaterials, 2022 - Elsevier
Biofabricated tissues have found numerous applications in tissue engineering and
regenerative medicine in addition to the promotion of disease modeling and drug …

Biofabrication strategies for 3D in vitro models and regenerative medicine

L Moroni, JA Burdick, C Highley, SJ Lee… - Nature Reviews …, 2018 - nature.com
Organs are complex systems composed of different cells, proteins and signalling molecules
that are arranged in a highly ordered structure to orchestrate a myriad of functions in our …

Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel‐based bioinks

X Cui, J Li, Y Hartanto, M Durham… - Advanced …, 2020 - Wiley Online Library
Abstract 3D bioprinting involves the combination of 3D printing technologies with cells,
growth factors and biomaterials, and has been considered as one of the most advanced …

Volumetric printing across melt electrowritten scaffolds fabricates multi‐material living constructs with tunable architecture and mechanics

G Größbacher, M Bartolf‐Kopp, C Gergely… - Advanced …, 2023 - Wiley Online Library
Major challenges in biofabrication revolve around capturing the complex, hierarchical
composition of native tissues. However, individual 3D printing techniques have limited …

The next frontier in melt electrospinning: taming the jet

TM Robinson, DW Hutmacher… - Advanced Functional …, 2019 - Wiley Online Library
There is a specialized niche for the electrohydrodynamic jetting of melts, from biomedical
products to filtration and soft matter applications. The next frontier includes optics …

Aspiration-assisted bioprinting for precise positioning of biologics

B Ayan, DN Heo, Z Zhang, M Dey, A Povilianskas… - Science …, 2020 - science.org
Three-dimensional (3D) bioprinting is an appealing approach for building tissues; however,
bioprinting of mini-tissue blocks (ie, spheroids) with precise control on their positioning in 3D …