Machine learning for electrocatalyst and photocatalyst design and discovery

H Mai, TC Le, D Chen, DA Winkler… - Chemical …, 2022 - ACS Publications
Electrocatalysts and photocatalysts are key to a sustainable future, generating clean fuels,
reducing the impact of global warming, and providing solutions to environmental pollution …

Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics

K Hippalgaonkar, Q Li, X Wang, JW Fisher III… - Nature Reviews …, 2023 - nature.com
As materials researchers increasingly embrace machine-learning (ML) methods, it is natural
to wonder what lessons can be learned from other fields undergoing similar developments …

Best practices in machine learning for chemistry

N Artrith, KT Butler, FX Coudert, S Han, O Isayev… - Nature …, 2021 - nature.com
Best practices in machine learning for chemistry | Nature Chemistry Skip to main content
Thank you for visiting nature.com. You are using a browser version with limited support for …

Computational discovery of transition-metal complexes: from high-throughput screening to machine learning

A Nandy, C Duan, MG Taylor, F Liu, AH Steeves… - Chemical …, 2021 - ACS Publications
Transition-metal complexes are attractive targets for the design of catalysts and functional
materials. The behavior of the metal–organic bond, while very tunable for achieving target …

Artificial intelligence-powered electronic skin

C Xu, SA Solomon, W Gao - Nature machine intelligence, 2023 - nature.com
Skin-interfaced electronics is gradually changing medical practices by enabling continuous
and non-invasive tracking of physiological and biochemical information. With the rise of big …

Human-and machine-centred designs of molecules and materials for sustainability and decarbonization

J Peng, D Schwalbe-Koda, K Akkiraju, T Xie… - Nature Reviews …, 2022 - nature.com
Breakthroughs in molecular and materials discovery require meaningful outliers to be
identified in existing trends. As knowledge accumulates, the inherent bias of human intuition …

The role of machine learning in the understanding and design of materials

SM Moosavi, KM Jablonka, B Smit - Journal of the American …, 2020 - ACS Publications
Developing algorithmic approaches for the rational design and discovery of materials can
enable us to systematically find novel materials, which can have huge technological and …

[HTML][HTML] Understanding the diversity of the metal-organic framework ecosystem

SM Moosavi, A Nandy, KM Jablonka, D Ongari… - Nature …, 2020 - nature.com
Millions of distinct metal-organic frameworks (MOFs) can be made by combining metal
nodes and organic linkers. At present, over 90,000 MOFs have been synthesized and over …

A critical review of machine learning of energy materials

C Chen, Y Zuo, W Ye, X Li, Z Deng… - Advanced Energy …, 2020 - Wiley Online Library
Abstract Machine learning (ML) is rapidly revolutionizing many fields and is starting to
change landscapes for physics and chemistry. With its ability to solve complex tasks …

Data-driven materials research enabled by natural language processing and information extraction

EA Olivetti, JM Cole, E Kim, O Kononova… - Applied Physics …, 2020 - pubs.aip.org
Given the emergence of data science and machine learning throughout all aspects of
society, but particularly in the scientific domain, there is increased importance placed on …