Gptuner: A manual-reading database tuning system via gpt-guided bayesian optimization

J Lao, Y Wang, Y Li, J Wang, Y Zhang, Z Cheng… - arXiv preprint arXiv …, 2023 - arxiv.org
Modern database management systems (DBMS) expose hundreds of configurable knobs to
control system behaviours. Determining the appropriate values for these knobs to improve …

Auto-bi: Automatically build bi-models leveraging local join prediction and global schema graph

Y Lin, Y He, S Chaudhuri - arXiv preprint arXiv:2306.12515, 2023 - arxiv.org
Business Intelligence (BI) is crucial in modern enterprises and billion-dollar business.
Traditionally, technical experts like database administrators would manually prepare BI …

ReAcTable: Enhancing ReAct for Table Question Answering

Y Zhang, J Henkel, A Floratou, J Cahoon… - arXiv preprint arXiv …, 2023 - arxiv.org
Table Question Answering (TQA) presents a substantial challenge at the intersection of
natural language processing and data analytics. This task involves answering natural …

Schema Matching with Large Language Models: an Experimental Study

M Parciak, B Vandevoort, F Neven, LM Peeters… - arXiv preprint arXiv …, 2024 - arxiv.org
Large Language Models (LLMs) have shown useful applications in a variety of tasks,
including data wrangling. In this paper, we investigate the use of an off-the-shelf LLM for …

GRAM: Generative Retrieval Augmented Matching of Data Schemas in the Context of Data Security

X Liu, R Wang, Y Song, L Kong - Proceedings of the 30th ACM SIGKDD …, 2024 - dl.acm.org
Schema matching constitutes a pivotal phase in the data ingestion process for contemporary
database systems. Its objective is to discern pairwise similarities between two sets of …

In Situ Neural Relational Schema Matcher

X Du, G Yuan, S Wu, G Chen… - 2024 IEEE 40th …, 2024 - ieeexplore.ieee.org
The scarcity of training data restricts a neural network from capturing schema diversity and
intricacies, hindering schema-matching models' generalization capabilities. In this paper, we …

LLM-SQL-Solver: Can LLMs Determine SQL Equivalence?

F Zhao, L Lim, I Ahmad, D Agrawal… - arXiv preprint arXiv …, 2023 - arxiv.org
Judging the equivalence between two SQL queries is a fundamental problem with many
practical applications in data management and SQL generation (ie, evaluating the quality of …

SMUTF: Schema Matching Using Generative Tags and Hybrid Features

Y Zhang, M Di, H Luo, C Xu, RTH Tsai - arXiv preprint arXiv:2402.01685, 2024 - arxiv.org
We introduce SMUTF, a unique approach for large-scale tabular data schema matching
(SM), which assumes that supervised learning does not affect performance in open-domain …

Automatic conceptual database design based on heterogeneous source artifacts

G Banjac, D Brđanin, D Banjac - Computer Science and Information …, 2024 - doiserbia.nb.rs
The article presents an approach to the automatic derivation of conceptual database models
from heterogeneous source artifacts. The approach is based on the integration of conceptual …

ReMatch: Retrieval Enhanced Schema Matching with LLMs

E Sheetrit, M Brief, M Mishaeli, O Elisha - arXiv preprint arXiv:2403.01567, 2024 - arxiv.org
Schema matching is a crucial task in data integration, involving the alignment of a source
database schema with a target schema to establish correspondence between their …