A comprehensive survey of continual learning: theory, method and application
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
Biological underpinnings for lifelong learning machines
D Kudithipudi, M Aguilar-Simon, J Babb… - Nature Machine …, 2022 - nature.com
Biological organisms learn from interactions with their environment throughout their lifetime.
For artificial systems to successfully act and adapt in the real world, it is desirable to similarly …
For artificial systems to successfully act and adapt in the real world, it is desirable to similarly …
Metafscil: A meta-learning approach for few-shot class incremental learning
In this paper, we tackle the problem of few-shot class incremental learning (FSCIL). FSCIL
aims to incrementally learn new classes with only a few samples in each class. Most existing …
aims to incrementally learn new classes with only a few samples in each class. Most existing …
[HTML][HTML] Embracing change: Continual learning in deep neural networks
Artificial intelligence research has seen enormous progress over the past few decades, but it
predominantly relies on fixed datasets and stationary environments. Continual learning is an …
predominantly relies on fixed datasets and stationary environments. Continual learning is an …
Constrained few-shot class-incremental learning
M Hersche, G Karunaratne… - Proceedings of the …, 2022 - openaccess.thecvf.com
Continually learning new classes from fresh data without forgetting previous knowledge of
old classes is a very challenging research problem. Moreover, it is imperative that such …
old classes is a very challenging research problem. Moreover, it is imperative that such …
Towards continual reinforcement learning: A review and perspectives
In this article, we aim to provide a literature review of different formulations and approaches
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …
Continual lifelong learning in natural language processing: A survey
Continual learning (CL) aims to enable information systems to learn from a continuous data
stream across time. However, it is difficult for existing deep learning architectures to learn a …
stream across time. However, it is difficult for existing deep learning architectures to learn a …
Understanding the role of training regimes in continual learning
Catastrophic forgetting affects the training of neural networks, limiting their ability to learn
multiple tasks sequentially. From the perspective of the well established plasticity-stability …
multiple tasks sequentially. From the perspective of the well established plasticity-stability …
Continual object detection: a review of definitions, strategies, and challenges
Abstract The field of Continual Learning investigates the ability to learn consecutive tasks
without losing performance on those previously learned. The efforts of researchers have …
without losing performance on those previously learned. The efforts of researchers have …
Continual learning in low-rank orthogonal subspaces
In continual learning (CL), a learner is faced with a sequence of tasks, arriving one after the
other, and the goal is to remember all the tasks once the continual learning experience is …
other, and the goal is to remember all the tasks once the continual learning experience is …