A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

Biological underpinnings for lifelong learning machines

D Kudithipudi, M Aguilar-Simon, J Babb… - Nature Machine …, 2022 - nature.com
Biological organisms learn from interactions with their environment throughout their lifetime.
For artificial systems to successfully act and adapt in the real world, it is desirable to similarly …

Metafscil: A meta-learning approach for few-shot class incremental learning

Z Chi, L Gu, H Liu, Y Wang, Y Yu… - Proceedings of the …, 2022 - openaccess.thecvf.com
In this paper, we tackle the problem of few-shot class incremental learning (FSCIL). FSCIL
aims to incrementally learn new classes with only a few samples in each class. Most existing …

[HTML][HTML] Embracing change: Continual learning in deep neural networks

R Hadsell, D Rao, AA Rusu, R Pascanu - Trends in cognitive sciences, 2020 - cell.com
Artificial intelligence research has seen enormous progress over the past few decades, but it
predominantly relies on fixed datasets and stationary environments. Continual learning is an …

Constrained few-shot class-incremental learning

M Hersche, G Karunaratne… - Proceedings of the …, 2022 - openaccess.thecvf.com
Continually learning new classes from fresh data without forgetting previous knowledge of
old classes is a very challenging research problem. Moreover, it is imperative that such …

Towards continual reinforcement learning: A review and perspectives

K Khetarpal, M Riemer, I Rish, D Precup - Journal of Artificial Intelligence …, 2022 - jair.org
In this article, we aim to provide a literature review of different formulations and approaches
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …

Continual lifelong learning in natural language processing: A survey

M Biesialska, K Biesialska, MR Costa-Jussa - arXiv preprint arXiv …, 2020 - arxiv.org
Continual learning (CL) aims to enable information systems to learn from a continuous data
stream across time. However, it is difficult for existing deep learning architectures to learn a …

Understanding the role of training regimes in continual learning

SI Mirzadeh, M Farajtabar, R Pascanu… - Advances in …, 2020 - proceedings.neurips.cc
Catastrophic forgetting affects the training of neural networks, limiting their ability to learn
multiple tasks sequentially. From the perspective of the well established plasticity-stability …

Continual object detection: a review of definitions, strategies, and challenges

AG Menezes, G de Moura, C Alves, AC de Carvalho - Neural networks, 2023 - Elsevier
Abstract The field of Continual Learning investigates the ability to learn consecutive tasks
without losing performance on those previously learned. The efforts of researchers have …

Continual learning in low-rank orthogonal subspaces

A Chaudhry, N Khan, P Dokania… - Advances in Neural …, 2020 - proceedings.neurips.cc
In continual learning (CL), a learner is faced with a sequence of tasks, arriving one after the
other, and the goal is to remember all the tasks once the continual learning experience is …