Vision-language pre-training: Basics, recent advances, and future trends

Z Gan, L Li, C Li, L Wang, Z Liu… - Foundations and Trends …, 2022 - nowpublishers.com
This monograph surveys vision-language pre-training (VLP) methods for multimodal
intelligence that have been developed in the last few years. We group these approaches …

From show to tell: A survey on deep learning-based image captioning

M Stefanini, M Cornia, L Baraldi… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Connecting Vision and Language plays an essential role in Generative Intelligence. For this
reason, large research efforts have been devoted to image captioning, ie describing images …

Pali: A jointly-scaled multilingual language-image model

X Chen, X Wang, S Changpinyo… - arXiv preprint arXiv …, 2022 - arxiv.org
Effective scaling and a flexible task interface enable large language models to excel at many
tasks. We present PaLI (Pathways Language and Image model), a model that extends this …

Mm-vet: Evaluating large multimodal models for integrated capabilities

W Yu, Z Yang, L Li, J Wang, K Lin, Z Liu… - arXiv preprint arXiv …, 2023 - arxiv.org
We propose MM-Vet, an evaluation benchmark that examines large multimodal models
(LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing …

Git: A generative image-to-text transformer for vision and language

J Wang, Z Yang, X Hu, L Li, K Lin, Z Gan, Z Liu… - arXiv preprint arXiv …, 2022 - arxiv.org
In this paper, we design and train a Generative Image-to-text Transformer, GIT, to unify
vision-language tasks such as image/video captioning and question answering. While …

Flamingo: a visual language model for few-shot learning

JB Alayrac, J Donahue, P Luc… - Advances in neural …, 2022 - proceedings.neurips.cc
Building models that can be rapidly adapted to novel tasks using only a handful of annotated
examples is an open challenge for multimodal machine learning research. We introduce …

Pix2struct: Screenshot parsing as pretraining for visual language understanding

K Lee, M Joshi, IR Turc, H Hu, F Liu… - International …, 2023 - proceedings.mlr.press
Visually-situated language is ubiquitous—sources range from textbooks with diagrams to
web pages with images and tables, to mobile apps with buttons and forms. Perhaps due to …

Scaling up vision-language pre-training for image captioning

X Hu, Z Gan, J Wang, Z Yang, Z Liu… - Proceedings of the …, 2022 - openaccess.thecvf.com
In recent years, we have witnessed significant performance boost in the image captioning
task based on vision-language pre-training (VLP). Scale is believed to be an important factor …

Learning transferable visual models from natural language supervision

A Radford, JW Kim, C Hallacy… - International …, 2021 - proceedings.mlr.press
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined
object categories. This restricted form of supervision limits their generality and usability since …

Coarse-to-fine vision-language pre-training with fusion in the backbone

ZY Dou, A Kamath, Z Gan, P Zhang… - Advances in neural …, 2022 - proceedings.neurips.cc
Abstract Vision-language (VL) pre-training has recently received considerable attention.
However, most existing end-to-end pre-training approaches either only aim to tackle VL …