Data-driven aerospace engineering: reframing the industry with machine learning

SL Brunton, J Nathan Kutz, K Manohar, AY Aravkin… - AIAA Journal, 2021 - arc.aiaa.org
Data science, and machine learning in particular, is rapidly transforming the scientific and
industrial landscapes. The aerospace industry is poised to capitalize on big data and …

Closed-loop turbulence control: Progress and challenges

SL Brunton, BR Noack - Applied Mechanics …, 2015 - asmedigitalcollection.asme.org
Closed-loop turbulence control is a critical enabler of aerodynamic drag reduction, lift
increase, mixing enhancement, and noise reduction. Current and future applications have …

[图书][B] Data-driven science and engineering: Machine learning, dynamical systems, and control

SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …

Modal analysis of fluid flows: Applications and outlook

K Taira, MS Hemati, SL Brunton, Y Sun, K Duraisamy… - AIAA journal, 2020 - arc.aiaa.org
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …

[图书][B] Dynamic mode decomposition: data-driven modeling of complex systems

The integration of data and scientific computation is driving a paradigm shift across the
engineering, natural, and physical sciences. Indeed, there exists an unprecedented …

Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns

K Manohar, BW Brunton, JN Kutz… - IEEE Control Systems …, 2018 - ieeexplore.ieee.org
Optimal sensor and actuator placement is an important unsolved problem in control theory.
Nearly every downstream control decision is affected by these sensor and actuator …

[图书][B] Machine learning control-taming nonlinear dynamics and turbulence

T Duriez, SL Brunton, BR Noack - 2017 - Springer
This book is an introduction to machine learning control (MLC), a surprisingly simple model-
free methodology to tame complex nonlinear systems. These systems are assumed to be …

Compressed sensing and dynamic mode decomposition

SL Brunton, JL Proctor, JH Tu… - Journal of computational …, 2016 - aimsciences.org
This work develops compressed sensing strategies for computing the dynamic mode
decomposition (DMD) from heavily subsampled or compressed data. The resulting DMD …

Estimation of cavitation velocity fields based on limited pressure data through improved U-shaped neural network

Y Xu, Y Sha, C Wang, Y Wei - Physics of Fluids, 2023 - pubs.aip.org
In marine applications, estimating velocity fields or other states from limited data are
important as it provides a reference for active control. In this work, we propose PVNet …

A tutorial-based survey on feature selection: Recent advancements on feature selection

A Moslemi - Engineering Applications of Artificial Intelligence, 2023 - Elsevier
Curse of dimensionality is known as big challenges in data mining, pattern recognition,
computer vison and machine learning in recent years. Feature selection and feature …