[HTML][HTML] Recent advances in stochastic gradient descent in deep learning
In the age of artificial intelligence, the best approach to handling huge amounts of data is a
tremendously motivating and hard problem. Among machine learning models, stochastic …
tremendously motivating and hard problem. Among machine learning models, stochastic …
Data-driven aerospace engineering: reframing the industry with machine learning
Data science, and machine learning in particular, is rapidly transforming the scientific and
industrial landscapes. The aerospace industry is poised to capitalize on big data and …
industrial landscapes. The aerospace industry is poised to capitalize on big data and …
随机梯度下降算法研究进展
史加荣, 王丹, 尚凡华, 张鹤于 - 自动化学报, 2021 - aas.net.cn
在机器学习领域中, 梯度下降算法是求解最优化问题最重要, 最基础的方法. 随着数据规模的不断
扩大, 传统的梯度下降算法已不能有效地解决大规模机器学习问题. 随机梯度下降算法在迭代 …
扩大, 传统的梯度下降算法已不能有效地解决大规模机器学习问题. 随机梯度下降算法在迭代 …
Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition
In 1963, Polyak proposed a simple condition that is sufficient to show a global linear
convergence rate for gradient descent. This condition is a special case of the Łojasiewicz …
convergence rate for gradient descent. This condition is a special case of the Łojasiewicz …
Stochastic variance reduction for nonconvex optimization
We study nonconvex finite-sum problems and analyze stochastic variance reduced gradient
(SVRG) methods for them. SVRG and related methods have recently surged into …
(SVRG) methods for them. SVRG and related methods have recently surged into …
Global optimality guarantees for policy gradient methods
J Bhandari, D Russo - Operations Research, 2024 - pubsonline.informs.org
Policy gradients methods apply to complex, poorly understood, control problems by
performing stochastic gradient descent over a parameterized class of polices. Unfortunately …
performing stochastic gradient descent over a parameterized class of polices. Unfortunately …
A primer on zeroth-order optimization in signal processing and machine learning: Principals, recent advances, and applications
Zeroth-order (ZO) optimization is a subset of gradient-free optimization that emerges in many
signal processing and machine learning (ML) applications. It is used for solving optimization …
signal processing and machine learning (ML) applications. It is used for solving optimization …
Stochastic model-based minimization of weakly convex functions
D Davis, D Drusvyatskiy - SIAM Journal on Optimization, 2019 - SIAM
We consider a family of algorithms that successively sample and minimize simple stochastic
models of the objective function. We show that under reasonable conditions on …
models of the objective function. We show that under reasonable conditions on …
Stochastic nested variance reduction for nonconvex optimization
We study nonconvex optimization problems, where the objective function is either an
average of n nonconvex functions or the expectation of some stochastic function. We …
average of n nonconvex functions or the expectation of some stochastic function. We …
Spiderboost and momentum: Faster variance reduction algorithms
SARAH and SPIDER are two recently developed stochastic variance-reduced algorithms,
and SPIDER has been shown to achieve a near-optimal first-order oracle complexity in …
and SPIDER has been shown to achieve a near-optimal first-order oracle complexity in …