Self-supervised learning of graph neural networks: A unified review

Y Xie, Z Xu, J Zhang, Z Wang… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Deep models trained in supervised mode have achieved remarkable success on a variety of
tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a …

Graph neural networks

G Corso, H Stark, S Jegelka, T Jaakkola… - Nature Reviews …, 2024 - nature.com
Graphs are flexible mathematical objects that can represent many entities and knowledge
from different domains, including in the life sciences. Graph neural networks (GNNs) are …

Graphmae: Self-supervised masked graph autoencoders

Z Hou, X Liu, Y Cen, Y Dong, H Yang, C Wang… - Proceedings of the 28th …, 2022 - dl.acm.org
Self-supervised learning (SSL) has been extensively explored in recent years. Particularly,
generative SSL has seen emerging success in natural language processing and other …

Data augmentation for deep graph learning: A survey

K Ding, Z Xu, H Tong, H Liu - ACM SIGKDD Explorations Newsletter, 2022 - dl.acm.org
Graph neural networks, a powerful deep learning tool to model graph-structured data, have
demonstrated remarkable performance on numerous graph learning tasks. To address the …

Graph self-supervised learning: A survey

Y Liu, M Jin, S Pan, C Zhou, Y Zheng… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Deep learning on graphs has attracted significant interests recently. However, most of the
works have focused on (semi-) supervised learning, resulting in shortcomings including …

S2gae: Self-supervised graph autoencoders are generalizable learners with graph masking

Q Tan, N Liu, X Huang, SH Choi, L Li, R Chen… - Proceedings of the …, 2023 - dl.acm.org
Self-supervised learning (SSL) has been demonstrated to be effective in pre-training models
that can be generalized to various downstream tasks. Graph Autoencoder (GAE), an …

Simple contrastive graph clustering

Y Liu, X Yang, S Zhou, X Liu, S Wang… - … on Neural Networks …, 2023 - ieeexplore.ieee.org
Contrastive learning has recently attracted plenty of attention in deep graph clustering due to
its promising performance. However, complicated data augmentations and time-consuming …

Graphmae2: A decoding-enhanced masked self-supervised graph learner

Z Hou, Y He, Y Cen, X Liu, Y Dong… - Proceedings of the …, 2023 - dl.acm.org
Graph self-supervised learning (SSL), including contrastive and generative approaches,
offers great potential to address the fundamental challenge of label scarcity in real-world …

Heterogeneous graph masked autoencoders

Y Tian, K Dong, C Zhang, C Zhang… - Proceedings of the AAAI …, 2023 - ojs.aaai.org
Generative self-supervised learning (SSL), especially masked autoencoders, has become
one of the most exciting learning paradigms and has shown great potential in handling …

Graph data augmentation for graph machine learning: A survey

T Zhao, W Jin, Y Liu, Y Wang, G Liu… - arXiv preprint arXiv …, 2022 - arxiv.org
Data augmentation has recently seen increased interest in graph machine learning given its
demonstrated ability to improve model performance and generalization by added training …