High‐energy lithium‐ion batteries: recent progress and a promising future in applications

J Xu, X Cai, S Cai, Y Shao, C Hu, S Lu… - Energy & …, 2023 - Wiley Online Library
It is of great significance to develop clean and new energy sources with high‐efficient
energy storage technologies, due to the excessive use of fossil energy that has caused …

Surface engineering toward stable lithium metal anodes

G Lu, J Nai, D Luan, X Tao, XW Lou - Science Advances, 2023 - science.org
The lithium (Li) metal anode (LMA) is susceptible to failure due to the growth of Li dendrites
caused by an unsatisfied solid electrolyte interface (SEI). With this regard, the design of …

Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement

T Wang, P Wang, L Pan, Z He, L Dai… - Advanced Energy …, 2023 - Wiley Online Library
Metal zinc is recognized as a promising anode candidate for aqueous zinc‐ion batteries
(AZIBs), however, dendrites and byproducts formation severe deteriorate its reversibility and …

[PDF][PDF] Research progress of solid electrolyte interphase in lithium batteries

Y Yang, C Yan, JQ Huang - Acta Physico-Chimica Sinica, 2021 - whxb.pku.edu.cn
Since their commercialization in 1991, lithium-ion batteries (LIBs), one of the greatest
inventions in history, have profoundly reshaped lifestyles owing to their high energy density …

A review of degradation mechanisms and recent achievements for Ni‐rich cathode‐based Li‐ion batteries

M Jiang, DL Danilov, RA Eichel… - Advanced Energy …, 2021 - Wiley Online Library
The growing demand for sustainable energy storage devices requires rechargeable lithium‐
ion batteries (LIBs) with higher specific capacity and stricter safety standards. Ni‐rich layered …

The passivity of lithium electrodes in liquid electrolytes for secondary batteries

X He, D Bresser, S Passerini, F Baakes… - Nature Reviews …, 2021 - nature.com
Rechargeable Li metal batteries are currently limited by safety concerns, continuous
electrolyte decomposition and rapid consumption of Li. These issues are mainly related to …

Selective Potassium Deposition Enables Dendrite‐Resistant Anodes for Ultrastable Potassium‐Metal Batteries

Y Feng, AM Rao, J Zhou, B Lu - Advanced Materials, 2023 - Wiley Online Library
Instability at the solid electrolyte interface (SEI) and uncontrollable growth of potassium
dendrites have been pressing issues for potassium‐ion batteries. Herein, a self‐supporting …

Lithium metal anodes with nonaqueous electrolytes

JG Zhang, W Xu, J Xiao, X Cao, J Liu - Chemical reviews, 2020 - ACS Publications
High-energy rechargeable lithium (Li) metal batteries (LMBs) with Li metal anode (LMA)
were first developed in the 1970s, but their practical applications have been hindered by the …

Rejuvenating dead lithium supply in lithium metal anodes by iodine redox

C Jin, T Liu, O Sheng, M Li, T Liu, Y Yuan, J Nai, Z Ju… - Nature Energy, 2021 - nature.com
Inactive lithium (more frequently called dead lithium) in the forms of solid–electrolyte
interphase and electrically isolated metallic lithium is principally responsible for the …

[HTML][HTML] Stabilizing metal battery anodes through the design of solid electrolyte interphases

Q Zhao, S Stalin, LA Archer - Joule, 2021 - cell.com
The solid electrolyte interphase (SEI) is a chemically distinct material phase formed by a
combination of electrochemical reduction and chemical reactions at both the explicit and …