Artificial intelligence applied to supply chain operations management: a systematic literature review

GD Mendonça, OFL Junior - International Journal of …, 2023 - inderscienceonline.com
Artificial intelligence (AI) has been a key driver to reduce operational uncertainty and
improve performance in supply chain management. Due to the advent of new data gathering …

[PDF][PDF] Comparative analysis of short-term demand predicting models using ARIMA and deep learning

H Bousqaoui, I Slimani… - International Journal of …, 2021 - pdfs.semanticscholar.org
The forecasting consists of taking historical data as inputs then using them to predict future
observations, thus determining future trends. Demand prediction is a crucial component in …

Traffic forecasting in Morocco using artificial neural networks

N Slimani, I Slimani, N Sbiti, M Amghar - Procedia Computer Science, 2019 - Elsevier
Due to industrialization and the growth of transportation systems, the number of vehicles
continues to increase which causes a significant traffic jam problem especially in big cities …

A network-based transfer learning approach to improve sales forecasting of new products

T Karb, N Kühl, R Hirt, V Glivici-Cotruta - arXiv preprint arXiv:2005.06978, 2020 - arxiv.org
Data-driven methods--such as machine learning and time series forecasting--are widely
used for sales forecasting in the food retail domain. However, for newly introduced products …

[HTML][HTML] Модель прогнозирования транспортного потока на основе нейронных сетей для предсказания трафика на дорогах

АХС Хуссейн, ЕВ Заргарян… - Известия Южного …, 2021 - cyberleninka.ru
В связи с индустриализацией современного общества, ростом транспортных систем
нашей страны, увеличения определенных необходимых для развития потребностей …

Analysis of machine learning integration into supply chain management

EYA Rodríguez, ECA Rodríguez… - … Journal of Logistics …, 2024 - inderscienceonline.com
The application of machine learning (ML) techniques in supply chain (SC) processes has
been gaining popularity over the last years, because ML significantly helps making the SC …

A supply chain inventory management method for civil aircraft manufacturing based on multi-agent reinforcement learning

M Piao, D Zhang, H Lu, R Li - Applied Sciences, 2023 - mdpi.com
Effective supply chain inventory management is crucial for large-scale manufacturing
industries such as civil aircraft and automobile manufacturing to ensure efficient …

[HTML][HTML] Оценка состояния динамического взвешивания с использованием фильтра Калмана

ЕВ Заргарян, ЮА Заргарян… - Известия Южного …, 2022 - cyberleninka.ru
В настоящее время в связи с повсеместной компьютеризацией разработка систем
автоматизированного управления является актуальной. В связи с развитием малого …

[PDF][PDF] Artificial intelligence applied to small businesses: the use of automatic feature engineering and machine learning for more accurate planning

AM Nascimento, VV de Melo, ACM Queiroz… - … de Contabilidade e …, 2021 - redalyc.org
How to cite Complete issue More information about this article Journal's webpage in redalyc.org
Scientific Information System Re Page 1 How to cite Complete issue More information about this …

Demand forecasting for delivery platforms by using neural network

R Abbate, P Manco, M Caterino, M Fera… - IFAC-PapersOnLine, 2022 - Elsevier
This paper deals with the tricky issue of forecasting the number of daily orders received by a
delivery company that operates through the internet. The research tries to address the …