Diffusion models in vision: A survey
Denoising diffusion models represent a recent emerging topic in computer vision,
demonstrating remarkable results in the area of generative modeling. A diffusion model is a …
demonstrating remarkable results in the area of generative modeling. A diffusion model is a …
A comprehensive survey on test-time adaptation under distribution shifts
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …
process that can effectively generalize to test samples, even in the presence of distribution …
A foundation model for clinical-grade computational pathology and rare cancers detection
The analysis of histopathology images with artificial intelligence aims to enable clinical
decision support systems and precision medicine. The success of such applications …
decision support systems and precision medicine. The success of such applications …
[HTML][HTML] Deep learning in food category recognition
Integrating artificial intelligence with food category recognition has been a field of interest for
research for the past few decades. It is potentially one of the next steps in revolutionizing …
research for the past few decades. It is potentially one of the next steps in revolutionizing …
Self-supervised learning from images with a joint-embedding predictive architecture
This paper demonstrates an approach for learning highly semantic image representations
without relying on hand-crafted data-augmentations. We introduce the Image-based Joint …
without relying on hand-crafted data-augmentations. We introduce the Image-based Joint …
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
CY Wang, A Bochkovskiy… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Real-time object detection is one of the most important research topics in computer vision.
As new approaches regarding architecture optimization and training optimization are …
As new approaches regarding architecture optimization and training optimization are …
MIC: Masked image consistency for context-enhanced domain adaptation
In unsupervised domain adaptation (UDA), a model trained on source data (eg synthetic) is
adapted to target data (eg real-world) without access to target annotation. Most previous …
adapted to target data (eg real-world) without access to target annotation. Most previous …
Continual test-time domain adaptation
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain
without using any source data. Existing works mainly consider the case where the target …
without using any source data. Existing works mainly consider the case where the target …
Semi-supervised semantic segmentation using unreliable pseudo-labels
The crux of semi-supervised semantic segmentation is to assign pseudo-labels to the pixels
of unlabeled images. A common practice is to select the highly confident predictions as the …
of unlabeled images. A common practice is to select the highly confident predictions as the …
Semi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbine
Wind turbines play a crucial role in renewable energy generation systems and are frequently
exposed to challenging operational environments. Monitoring and diagnosing potential …
exposed to challenging operational environments. Monitoring and diagnosing potential …