A comprehensive survey on recent metaheuristics for feature selection

T Dokeroglu, A Deniz, HE Kiziloz - Neurocomputing, 2022 - Elsevier
Feature selection has become an indispensable machine learning process for data
preprocessing due to the ever-increasing sizes in actual data. There have been many …

A review of the modification strategies of the nature inspired algorithms for feature selection problem

R Abu Khurma, I Aljarah, A Sharieh, M Abd Elaziz… - Mathematics, 2022 - mdpi.com
This survey is an effort to provide a research repository and a useful reference for
researchers to guide them when planning to develop new Nature-inspired Algorithms …

A binary waterwheel plant optimization algorithm for feature selection

AA Alhussan, AA Abdelhamid, ESM El-Kenawy… - IEEE …, 2023 - ieeexplore.ieee.org
The vast majority of today's data is collected and stored in enormous databases with a wide
range of characteristics that have little to do with the overarching goal concept. Feature …

Simulated annealing-based dynamic step shuffled frog leaping algorithm: Optimal performance design and feature selection

Y Liu, AA Heidari, Z Cai, G Liang, H Chen, Z Pan… - Neurocomputing, 2022 - Elsevier
The shuffled frog leaping algorithm is a new optimization algorithm proposed to solve the
combinatorial optimization problem, which effectively combines the memetic algorithm …

Improved binary grey wolf optimizer and its application for feature selection

P Hu, JS Pan, SC Chu - Knowledge-Based Systems, 2020 - Elsevier
Abstract Grey Wolf Optimizer (GWO) is a new swarm intelligence algorithm mimicking the
behaviours of grey wolves. Its abilities include fast convergence, simplicity and easy …

A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection

M Abdel-Basset, D El-Shahat, I El-Henawy… - Expert Systems with …, 2020 - Elsevier
Because of their high dimensionality, dealing with large datasets can hinder the data mining
process. Thus, the feature selection is a pre-process mandatory phase for reducing the …

A survey on evolutionary computation approaches to feature selection

B Xue, M Zhang, WN Browne… - IEEE Transactions on …, 2015 - ieeexplore.ieee.org
Feature selection is an important task in data mining and machine learning to reduce the
dimensionality of the data and increase the performance of an algorithm, such as a …

Improved salp swarm algorithm based on particle swarm optimization for feature selection

RA Ibrahim, AA Ewees, D Oliva, M Abd Elaziz… - Journal of Ambient …, 2019 - Springer
Feature selection (FS) is a machine learning process commonly used to reduce the high
dimensionality problems of datasets. This task permits to extract the most representative …

A survey on semi-supervised feature selection methods

R Sheikhpour, MA Sarram, S Gharaghani… - Pattern recognition, 2017 - Elsevier
Feature selection is a significant task in data mining and machine learning applications
which eliminates irrelevant and redundant features and improves learning performance. In …

Feature selection via a novel chaotic crow search algorithm

GI Sayed, AE Hassanien, AT Azar - Neural computing and applications, 2019 - Springer
Crow search algorithm (CSA) is a new natural inspired algorithm proposed by Askarzadeh
in 2016. The main inspiration of CSA came from crow search mechanism for hiding their …