A comprehensive survey of continual learning: theory, method and application
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
A comprehensive survey of forgetting in deep learning beyond continual learning
Forgetting refers to the loss or deterioration of previously acquired information or knowledge.
While the existing surveys on forgetting have primarily focused on continual learning …
While the existing surveys on forgetting have primarily focused on continual learning …
Fetril: Feature translation for exemplar-free class-incremental learning
Exemplar-free class-incremental learning is very challenging due to the negative effect of
catastrophic forgetting. A balance between stability and plasticity of the incremental process …
catastrophic forgetting. A balance between stability and plasticity of the incremental process …
Learning weather-general and weather-specific features for image restoration under multiple adverse weather conditions
Image restoration under multiple adverse weather conditions aims to remove weather-
related artifacts by using the single set of network parameters. In this paper, we find that …
related artifacts by using the single set of network parameters. In this paper, we find that …
Continual segment: Towards a single, unified and non-forgetting continual segmentation model of 143 whole-body organs in ct scans
Deep learning empowers the mainstream medical image segmentation methods.
Nevertheless, current deep segmentation approaches are not capable of efficiently and …
Nevertheless, current deep segmentation approaches are not capable of efficiently and …
Endpoints weight fusion for class incremental semantic segmentation
Class incremental semantic segmentation (CISS) focuses on alleviating catastrophic
forgetting to improve discrimination. Previous work mainly exploit regularization (eg …
forgetting to improve discrimination. Previous work mainly exploit regularization (eg …
Class-incremental learning: A survey
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …
in many vision tasks in the closed world. However, novel classes emerge from time to time in …
Fecam: Exploiting the heterogeneity of class distributions in exemplar-free continual learning
Exemplar-free class-incremental learning (CIL) poses several challenges since it prohibits
the rehearsal of data from previous tasks and thus suffers from catastrophic forgetting …
the rehearsal of data from previous tasks and thus suffers from catastrophic forgetting …
When prompt-based incremental learning does not meet strong pretraining
YM Tang, YX Peng, WS Zheng - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Incremental learning aims to overcome catastrophic forgetting when learning deep networks
from sequential tasks. With impressive learning efficiency and performance, prompt-based …
from sequential tasks. With impressive learning efficiency and performance, prompt-based …