A review on design inspired subsampling for big data
J Yu, M Ai, Z Ye - Statistical Papers, 2024 - Springer
Subsampling focuses on selecting a subsample that can efficiently sketch the information of
the original data in terms of statistical inference. It provides a powerful tool in big data …
the original data in terms of statistical inference. It provides a powerful tool in big data …
A selective review on statistical methods for massive data computation: distributed computing, subsampling, and minibatch techniques
This paper presents a selective review of statistical computation methods for massive data
analysis. A huge amount of statistical methods for massive data computation have been …
analysis. A huge amount of statistical methods for massive data computation have been …
Supervised Stratified Subsampling for Predictive Analytics
MC Chang - Journal of Computational and Graphical Statistics, 2024 - Taylor & Francis
Predictive analytics involves the use of statistical models to make predictions; however, the
power of these techniques is hindered by ever-increasing quantities of data. The richness …
power of these techniques is hindered by ever-increasing quantities of data. The richness …
CluBear: a subsampling package for interactive statistical analysis with massive data on a single machine
This article introduces CluBear, a Python-based open-source package for interactive
massive data analysis. The key feature of CluBear is that it enables users to conduct …
massive data analysis. The key feature of CluBear is that it enables users to conduct …
On the asymptotic properties of a bagging estimator with a massive dataset
Bagging is a useful method for large‐scale statistical analysis, especially when the
computing resources are very limited. We study here the asymptotic properties of bagging …
computing resources are very limited. We study here the asymptotic properties of bagging …
A novel approach of empirical likelihood with massive data
Y Liu, X Chen, W Yang - arXiv preprint arXiv:2303.07259, 2023 - arxiv.org
In this paper, we propose a novel approach for tackling the obstacles of empirical likelihood
in the face of massive data, which is called split sample mean empirical likelihood (SSMEL) …
in the face of massive data, which is called split sample mean empirical likelihood (SSMEL) …
Tendencia corrosiva por CO 2 del gas natural basada en su composición mediante Redes Neuronales Artificiales
TD Marín-Velásquez - FIGEMPA: Investigación y Desarrollo, 2024 - scielo.senescyt.gob.ec
La corrosión es un problema recurrente en la industria del gas natural, debido a la
presencia de gases corrosivos como el CO2 y el H2S que en presencia de agua pueden …
presencia de gases corrosivos como el CO2 y el H2S que en presencia de agua pueden …
FIGEMPA: Investigación y Desarrollo
TD Marín-Velásquez - FIGEMPA: Investigación y …, 2024 - revistadigital.uce.edu.ec
La corrosión es un problema recurrente en la industria del gas natural, debido a la
presencia de gases corrosivos como el CO 2 y el H 2 S que en presencia de agua pueden …
presencia de gases corrosivos como el CO 2 y el H 2 S que en presencia de agua pueden …
[PDF][PDF] Tendencia corrosiva por CO2 del gas natural basada en su composición mediante Redes Neuronales Artificiales CO2 corrosion trend of natural gas based on …
TD Marín-Velásquez - Investigación y Desarrollo - revistadigital.uce.edu.ec
Para el desarrollo de la investigación se obtuvo una muestra de 46 cromatografías de gas
natural de bases de datos de Petróleos de Venezuela (PDVSA) de la región oriental de …
natural de bases de datos de Petróleos de Venezuela (PDVSA) de la región oriental de …