A Comprehensive Assessment of Water Loss and Driving Forces for the Middle Route of the South-to-North Water Diversion Project from Humanistic Perspective

J Xiao, Q Ge, M Hu, H Cui - Water Resources Management, 2024 - Springer
Interbasin water transfer is a globally employed and significant strategy to address water
scarcity, conflicts, and achieve specific Sustainable Development Goals (SDGs). The issue …

Group penalized unrestricted mixed data sampling model with application to forecasting US GDP growth

Q Xu, X Zhuo, C Jiang, X Liu, Y Liu - Economic Modelling, 2018 - Elsevier
To identify important variables at block level in high dimensional mixed frequency data
analysis, we introduce a specific type of group penalized function into the U-MIDAS …

Sure independence screening in the presence of missing data

AZ Zambom, GJ Matthews - Statistical Papers, 2021 - Springer
Variable selection in ultra-high dimensional data sets is an increasingly prevalent issue with
the readily available data arising from, for example, genome-wide associations studies or …

A review of dimensionality reduction methods applied on clinical data of diabetic neuropathy complaints

R Usharani, M Murali - International Journal of …, 2021 - inderscienceonline.com
Aim of this paper is to apply Dimensionality Reduction techniques on a large clinical data of
Type II diabetes patients in identifying the causes and symptoms that they tend to develop …

Switching Coefficients or Automatic Variable Selection: An Application in Forecasting Commodity Returns

M Guidolin, M Pedio - Forecasting, 2022 - mdpi.com
In this paper, we conduct a thorough investigation of the predictive ability of forward and
backward stepwise regressions and hidden Markov models for the futures returns of several …

[PDF][PDF] REDUCING DIMENSION OF SPATIO TEMPORAL MODELS OF NONLINEAR DYNAMIC PROCESSES OF IRON ORE RAW MATERIALS ENRICHMENT

VS Morkun, NV Morkun, VV Tron - ТОМСКОГО …, 2019 - earchive.tpu.ru
Results. The authors have proposed the improved approach for modeling iron ore raw
material enrichment as spatio temporal struc tures with distributed parameters, taking into …

Dimension reduction based on conditional multiple index density function

J Zhang, B He, T Lu, S Wen - 2018 - projecteuclid.org
In this paper, a dimension reduction method is proposed by using the first derivative of the
conditional density function of response given predictors. To estimate the central subspace …

Снижение размерности пространственно-временных моделей нелинейных динамических процессов обогащения железорудного сырья

ВС Моркун, НВ Моркун, ВВ Тронь… - Известия Томского …, 2019 - cyberleninka.ru
Актуальность исследования обоснована важностью задачи повышения качества
нелинейных моделей технологических процессов обогащения железорудного сырья …

Dimensionality scale back in massive datasets using PDLPP

JM Alostad - Journal of computational science, 2018 - Elsevier
The main objective of this paper is to reduce data dimensionality in high-dimensional feature
datasets. It uses an effective distance based Non-integer Matrix Factorization (NMF) method …

[PDF][PDF] Improved probabilistic distance based locality preserving projections method to reduce dimensionality in large datasets

JM Alostad - International Journal of Electrical and Computer …, 2019 - core.ac.uk
In this paper, a dimensionality reduction is achieved in large datasets using the proposed
distance based Non-integer Matrix Factorization (NMF) technique, which is intended to solve …