[HTML][HTML] Deep learning in histopathology: the path to the clinic

J Van der Laak, G Litjens, F Ciompi - Nature medicine, 2021 - nature.com
Abstract Machine learning techniques have great potential to improve medical diagnostics,
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …

Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review

EH Houssein, MM Emam, AA Ali… - Expert Systems with …, 2021 - Elsevier
Breast cancer is the second leading cause of death for women, so accurate early detection
can help decrease breast cancer mortality rates. Computer-aided detection allows …

Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning

B Li, Y Li, KW Eliceiri - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
We address the challenging problem of whole slide image (WSI) classification. WSIs have
very high resolutions and usually lack localized annotations. WSI classification can be cast …

Automated detection of COVID-19 cases using deep neural networks with X-ray images

T Ozturk, M Talo, EA Yildirim, UB Baloglu… - Computers in biology …, 2020 - Elsevier
Abstract The novel coronavirus 2019 (COVID-2019), which first appeared in Wuhan city of
China in December 2019, spread rapidly around the world and became a pandemic. It has …

Deep neural network models for computational histopathology: A survey

CL Srinidhi, O Ciga, AL Martel - Medical image analysis, 2021 - Elsevier
Histopathological images contain rich phenotypic information that can be used to monitor
underlying mechanisms contributing to disease progression and patient survival outcomes …

Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl

JC Caicedo, A Goodman, KW Karhohs, BA Cimini… - Nature …, 2019 - nature.com
Segmenting the nuclei of cells in microscopy images is often the first step in the quantitative
analysis of imaging data for biological and biomedical applications. Many bioimage analysis …

[HTML][HTML] The impact of pre-and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

M Salvi, UR Acharya, F Molinari… - Computers in Biology and …, 2021 - Elsevier
Recently, deep learning frameworks have rapidly become the main methodology for
analyzing medical images. Due to their powerful learning ability and advantages in dealing …

A novel deep learning based framework for the detection and classification of breast cancer using transfer learning

SU Khan, N Islam, Z Jan, IU Din… - Pattern Recognition …, 2019 - Elsevier
Breast cancer is among the leading cause of mortality among women in developing as well
as under-developing countries. The detection and classification of breast cancer in the early …

Bach: Grand challenge on breast cancer histology images

G Aresta, T Araújo, S Kwok, SS Chennamsetty… - Medical image …, 2019 - Elsevier
Breast cancer is the most common invasive cancer in women, affecting more than 10% of
women worldwide. Microscopic analysis of a biopsy remains one of the most important …

Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images

Y Celik, M Talo, O Yildirim, M Karabatak… - Pattern Recognition …, 2020 - Elsevier
Advances in artificial intelligence technologies have made it possible to obtain more
accurate and reliable results using digital images. Due to the advances in digital …