Functional-hybrid modeling through automated adaptive symbolic regression for interpretable mathematical expressions

H Narayanan, MNC Bournazou, GG Gosálbez… - Chemical Engineering …, 2022 - Elsevier
Mathematical models used for the representation of (bio)-chemical processes can be
grouped into two broad paradigms: white-box or mechanistic models, completely based on …

A reinforcement learning approach to domain-knowledge inclusion using grammar guided symbolic regression

L Crochepierre, L Boudjeloud-Assala… - arXiv preprint arXiv …, 2022 - arxiv.org
In recent years, symbolic regression has been of wide interest to provide an interpretable
symbolic representation of potentially large data relationships. Initially circled to genetic …

Symbolic regression-based adaptive generation of implied volatility

J Yen, YY Qi, SF Wong, J Zhou - International Journal of Financial …, 2022 - World Scientific
This research paper introduces a new form of Implied Volatility calculation with Symbolic
Regression suited for high-frequency trading. The solutions are easily migratable to …

DICO-NEEP: NEEP with Distance Information and Constant Optimization

C Liu, C Pang, L Wang, B Yang - 2024 International Joint …, 2024 - ieeexplore.ieee.org
Symbolic regression represents a critical challenge in computer science, aiming to derive
accurate equations for given datasets. The classical symbolic regression algorithm, Neuro …

OPT-GAN: a broad-spectrum global optimizer for black-box problems by learning distribution

M Lu, S Ning, S Liu, F Sun, B Zhang, B Yang… - Proceedings of the …, 2023 - ojs.aaai.org
Black-box optimization (BBO) algorithms are concerned with finding the best solutions for
problems with missing analytical details. Most classical methods for such problems are …

[PDF][PDF] Apprentissage automatique interactif pour les opérateurs du réseau électrique

L Crochepierre - 2022 - docnum.univ-lorraine.fr
Je me dois de remercier toutes les personnes grâce à qui ces années se sont passées dans
les meilleures conditions possibles et ont contribué de près ou de loin à la réussite de cette …

Utilizing the NEEP Model to Predict the Compressive Strength of Cement

C Liu, X Wu, L Wang, B Yang, X Zhao… - … Conference on New …, 2023 - ieeexplore.ieee.org
In the construction industry, cement is widely used, and its quality standards are particularly
stringent. Among these standards, the compressive strength of cement is one of the most …

Linear-dependent multi-interpretation neuro-encoded expression programming

J Ma, F Gao, S Liu, L Wang - Proceedings of the Genetic and …, 2021 - dl.acm.org
Neuro-Encoded Expression Programming (NEEP) implements the continuous coding for the
discrete solution through recurrent neural networks (RNNs), and smooths sharpness of the …

[图书][B] Perils and pitfalls of symbolic regression

R Grindle - 2021 - search.proquest.com
The ever-growing accumulation of data makes automated distillation of understandable
models from that data ever-more desirable. Deriving equations directly from data using …