A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

A survey of large language models

WX Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou… - arXiv preprint arXiv …, 2023 - arxiv.org
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …

The rise and potential of large language model based agents: A survey

Z Xi, W Chen, X Guo, W He, Y Ding, B Hong… - arXiv preprint arXiv …, 2023 - arxiv.org
For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing
the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are …

Three types of incremental learning

GM Van de Ven, T Tuytelaars, AS Tolias - Nature Machine Intelligence, 2022 - nature.com
Incrementally learning new information from a non-stationary stream of data, referred to as
'continual learning', is a key feature of natural intelligence, but a challenging problem for …

Flamingo: a visual language model for few-shot learning

JB Alayrac, J Donahue, P Luc… - Advances in neural …, 2022 - proceedings.neurips.cc
Building models that can be rapidly adapted to novel tasks using only a handful of annotated
examples is an open challenge for multimodal machine learning research. We introduce …

Continual test-time domain adaptation

Q Wang, O Fink, L Van Gool… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain
without using any source data. Existing works mainly consider the case where the target …

Dualprompt: Complementary prompting for rehearsal-free continual learning

Z Wang, Z Zhang, S Ebrahimi, R Sun, H Zhang… - … on Computer Vision, 2022 - Springer
Continual learning aims to enable a single model to learn a sequence of tasks without
catastrophic forgetting. Top-performing methods usually require a rehearsal buffer to store …

Sam-clip: Merging vision foundation models towards semantic and spatial understanding

H Wang, PKA Vasu, F Faghri… - Proceedings of the …, 2024 - openaccess.thecvf.com
The landscape of publicly available vision foundation models (VFMs) such as CLIP and
SAM is expanding rapidly. VFMs are endowed with distinct capabilities stemming from their …

Learn from others and be yourself in heterogeneous federated learning

W Huang, M Ye, B Du - … of the IEEE/CVF Conference on …, 2022 - openaccess.thecvf.com
Federated learning has emerged as an important distributed learning paradigm, which
normally involves collaborative updating with others and local updating on private data …