Deep learning for anomaly detection: A review

G Pang, C Shen, L Cao, AVD Hengel - ACM computing surveys (CSUR), 2021 - dl.acm.org
Anomaly detection, aka outlier detection or novelty detection, has been a lasting yet active
research area in various research communities for several decades. There are still some …

Generalized video anomaly event detection: Systematic taxonomy and comparison of deep models

Y Liu, D Yang, Y Wang, J Liu, J Liu… - ACM Computing …, 2024 - dl.acm.org
Video Anomaly Detection (VAD) serves as a pivotal technology in the intelligent surveillance
systems, enabling the temporal or spatial identification of anomalous events within videos …

Self-supervised predictive convolutional attentive block for anomaly detection

NC Ristea, N Madan, RT Ionescu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Anomaly detection is commonly pursued as a one-class classification problem, where
models can only learn from normal training samples, while being evaluated on both normal …

Weakly-supervised video anomaly detection with robust temporal feature magnitude learning

Y Tian, G Pang, Y Chen, R Singh… - Proceedings of the …, 2021 - openaccess.thecvf.com
Anomaly detection with weakly supervised video-level labels is typically formulated as a
multiple instance learning (MIL) problem, in which we aim to identify snippets containing …

Learning memory-guided normality for anomaly detection

H Park, J Noh, B Ham - … of the IEEE/CVF conference on …, 2020 - openaccess.thecvf.com
We address the problem of anomaly detection, that is, detecting anomalous events in a
video sequence. Anomaly detection methods based on convolutional neural networks …

Anomaly detection in video via self-supervised and multi-task learning

MI Georgescu, A Barbalau… - Proceedings of the …, 2021 - openaccess.thecvf.com
Anomaly detection in video is a challenging computer vision problem. Due to the lack of
anomalous events at training time, anomaly detection requires the design of learning …

Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection

D Gong, L Liu, V Le, B Saha… - Proceedings of the …, 2019 - openaccess.thecvf.com
Deep autoencoder has been extensively used for anomaly detection. Training on the normal
data, the autoencoder is expected to produce higher reconstruction error for the abnormal …

Video event restoration based on keyframes for video anomaly detection

Z Yang, J Liu, Z Wu, P Wu, X Liu - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Video anomaly detection (VAD) is a significant computer vision problem. Existing deep
neural network (DNN) based VAD methods mostly follow the route of frame reconstruction or …

A comprehensive review on deep learning-based methods for video anomaly detection

R Nayak, UC Pati, SK Das - Image and Vision Computing, 2021 - Elsevier
Video surveillance systems are popular and used in public places such as market places,
shopping malls, hospitals, banks, streets, education institutions, city administrative offices …

Anomaly detection in video sequence with appearance-motion correspondence

TN Nguyen, J Meunier - Proceedings of the IEEE/CVF …, 2019 - openaccess.thecvf.com
Anomaly detection in surveillance videos is currently a challenge because of the diversity of
possible events. We propose a deep convolutional neural network (CNN) that addresses …