Deep learning for anomaly detection: A review
Anomaly detection, aka outlier detection or novelty detection, has been a lasting yet active
research area in various research communities for several decades. There are still some …
research area in various research communities for several decades. There are still some …
Generalized video anomaly event detection: Systematic taxonomy and comparison of deep models
Video Anomaly Detection (VAD) serves as a pivotal technology in the intelligent surveillance
systems, enabling the temporal or spatial identification of anomalous events within videos …
systems, enabling the temporal or spatial identification of anomalous events within videos …
Self-supervised predictive convolutional attentive block for anomaly detection
Anomaly detection is commonly pursued as a one-class classification problem, where
models can only learn from normal training samples, while being evaluated on both normal …
models can only learn from normal training samples, while being evaluated on both normal …
Weakly-supervised video anomaly detection with robust temporal feature magnitude learning
Anomaly detection with weakly supervised video-level labels is typically formulated as a
multiple instance learning (MIL) problem, in which we aim to identify snippets containing …
multiple instance learning (MIL) problem, in which we aim to identify snippets containing …
Learning memory-guided normality for anomaly detection
We address the problem of anomaly detection, that is, detecting anomalous events in a
video sequence. Anomaly detection methods based on convolutional neural networks …
video sequence. Anomaly detection methods based on convolutional neural networks …
Anomaly detection in video via self-supervised and multi-task learning
MI Georgescu, A Barbalau… - Proceedings of the …, 2021 - openaccess.thecvf.com
Anomaly detection in video is a challenging computer vision problem. Due to the lack of
anomalous events at training time, anomaly detection requires the design of learning …
anomalous events at training time, anomaly detection requires the design of learning …
Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection
Deep autoencoder has been extensively used for anomaly detection. Training on the normal
data, the autoencoder is expected to produce higher reconstruction error for the abnormal …
data, the autoencoder is expected to produce higher reconstruction error for the abnormal …
Video event restoration based on keyframes for video anomaly detection
Video anomaly detection (VAD) is a significant computer vision problem. Existing deep
neural network (DNN) based VAD methods mostly follow the route of frame reconstruction or …
neural network (DNN) based VAD methods mostly follow the route of frame reconstruction or …
A comprehensive review on deep learning-based methods for video anomaly detection
Video surveillance systems are popular and used in public places such as market places,
shopping malls, hospitals, banks, streets, education institutions, city administrative offices …
shopping malls, hospitals, banks, streets, education institutions, city administrative offices …
Anomaly detection in video sequence with appearance-motion correspondence
TN Nguyen, J Meunier - Proceedings of the IEEE/CVF …, 2019 - openaccess.thecvf.com
Anomaly detection in surveillance videos is currently a challenge because of the diversity of
possible events. We propose a deep convolutional neural network (CNN) that addresses …
possible events. We propose a deep convolutional neural network (CNN) that addresses …