Sensitivity optimization for NV-diamond magnetometry
Solid-state spin systems including nitrogen-vacancy (NV) centers in diamond constitute an
increasingly favored quantum sensing platform. However, present NV ensemble devices …
increasingly favored quantum sensing platform. However, present NV ensemble devices …
Quantum sensing
“Quantum sensing” describes the use of a quantum system, quantum properties, or quantum
phenomena to perform a measurement of a physical quantity. Historical examples of …
phenomena to perform a measurement of a physical quantity. Historical examples of …
Multi-qubit entanglement and algorithms on a neutral-atom quantum computer
Gate-model quantum computers promise to solve currently intractable computational
problems if they can be operated at scale with long coherence times and high-fidelity logic …
problems if they can be operated at scale with long coherence times and high-fidelity logic …
A quantum processor based on coherent transport of entangled atom arrays
The ability to engineer parallel, programmable operations between desired qubits within a
quantum processor is key for building scalable quantum information systems,. In most state …
quantum processor is key for building scalable quantum information systems,. In most state …
Scalable error mitigation for noisy quantum circuits produces competitive expectation values
Noise in existing quantum processors only enables an approximation to ideal quantum
computation. However, for the computation of expectation values, these approximations can …
computation. However, for the computation of expectation values, these approximations can …
Exponential suppression of bit or phase flip errors with repetitive error correction
Realizing the potential of quantum computing will require achieving sufficiently low logical
error rates. Many applications call for error rates in the $10^{-15} $ regime, but state-of-the …
error rates. Many applications call for error rates in the $10^{-15} $ regime, but state-of-the …
Many-body–localized discrete time crystal with a programmable spin-based quantum simulator
J Randall, CE Bradley, FV van der Gronden, A Galicia… - Science, 2021 - science.org
The discrete time crystal (DTC) is a nonequilibrium phase of matter that spontaneously
breaks time-translation symmetry. Disorder-induced many-body localization can stabilize the …
breaks time-translation symmetry. Disorder-induced many-body localization can stabilize the …
Dipolar spin-exchange and entanglement between molecules in an optical tweezer array
Ultracold polar molecules are promising candidate qubits for quantum computing and
quantum simulations. Their long-lived molecular rotational states form robust qubits, and the …
quantum simulations. Their long-lived molecular rotational states form robust qubits, and the …
Microwave spin control of a tin-vacancy qubit in diamond
The negatively charged tin-vacancy (SnV-) center in diamond is a promising solid-state qubit
for applications in quantum networking due to its high quantum efficiency, strong zero …
for applications in quantum networking due to its high quantum efficiency, strong zero …
Noisy intermediate-scale quantum computers
Quantum computers have made extraordinary progress over the past decade, and
significant milestones have been achieved along the path of pursuing universal fault-tolerant …
significant milestones have been achieved along the path of pursuing universal fault-tolerant …