The relaxed area of 𝕊1-valued singular maps in the strict BV-convergence
G Bellettini, S Carano, R Scala - ESAIM: Control, Optimisation and …, 2022 - esaim-cocv.org
Given a bounded open set Ω⊂ ℝ 2, we study the relaxation of the nonparametric area
functional in the strict topology in BV (Ω; ℝ 2). and compute it for vortex-type maps, and more …
functional in the strict topology in BV (Ω; ℝ 2). and compute it for vortex-type maps, and more …
Relaxed area of 0-homogeneous maps in the strict BV-convergence
S Carano - Annali di Matematica Pura ed Applicata (1923-), 2024 - Springer
Relaxed area of 0-homogeneous maps in the strict BV-convergence | Annali di Matematica
Pura ed Applicata (1923 -) Skip to main content SpringerLink Account Menu Find a journal …
Pura ed Applicata (1923 -) Skip to main content SpringerLink Account Menu Find a journal …
On the L 1-relaxed area of graphs of BV piecewise constant maps taking three values
R Scala, G Scianna - Advances in Calculus of Variations, 2024 - degruyter.com
Given a bounded open connected set Ω⊂ ℝ 2 with Lipschitz boundary, we consider the
class of piecewise constant maps u taking three fixed values α, β, γ∈ ℝ 2, vertices of an …
class of piecewise constant maps u taking three fixed values α, β, γ∈ ℝ 2, vertices of an …
A non-parametric Plateau problem with partial free boundary
G Bellettini, R Marziani, R Scala - arXiv preprint arXiv:2201.06145, 2022 - arxiv.org
We consider a Plateau problem in codimension $1 $ in the non-parametric setting. A
Dirichlet boundary datum is given only on part of the boundary $\partial\Omega $ of a …
Dirichlet boundary datum is given only on part of the boundary $\partial\Omega $ of a …
Upper bounds for the relaxed area of -valued Sobolev maps and its countably subadditive interior envelope
G Bellettini, R Scala, G Scianna - arXiv preprint arXiv:2307.06885, 2023 - arxiv.org
Given a bounded open connected Lipschitz set $\Omega\subset\mathbb R^ 2$, we show
that the relaxed Cartesian area functional $\overline {\mathcal A}(u,\Omega) $ of a map …
that the relaxed Cartesian area functional $\overline {\mathcal A}(u,\Omega) $ of a map …
Upper bounds for the relaxed area of S1-valued Sobolev maps and its countably subadditive interior envelope
G Bellettini, R Scala, G Scianna - Revista Matemática …, 2024 - content.ems.press
Given a connected bounded open Lipschitz set R2, we show that the relaxed Cartesian area
functional Au;/of a map u 2 W 1; 1. IS 1/is finite, and we provide a useful upper bound for its …
functional Au;/of a map u 2 W 1; 1. IS 1/is finite, and we provide a useful upper bound for its …
The relaxed area of -valued singular maps in the strict -convergence
G Bellettini, S Carano, R Scala - arXiv preprint arXiv:2305.10584, 2023 - arxiv.org
Given a bounded open set $\Omega\subset\mathbb {R}^ 2$, we study the relaxation of the
nonparametric area functional in the strict topology in $ BV (\Omega;\mathbb {R}^ 2) $, and …
nonparametric area functional in the strict topology in $ BV (\Omega;\mathbb {R}^ 2) $, and …
Area functional and relaxation: an approach in dimension 2 and codimension 2 via strict BV-convergence
S Carano - 2023 - iris.sissa.it
In this thesis we address the problem of relaxation of the Cartesian area functional with
respect to the strict convergence in $ BV $ for maps $ u:\Om\subset\R^ 2\to\R^ 2$. The …
respect to the strict convergence in $ BV $ for maps $ u:\Om\subset\R^ 2\to\R^ 2$. The …