Joint Estimation of Neural Events and Hemodynamic Response Functions from Task fMRI via Convolutional Neural Networks

KC Chuang, S Ramakrishnapillai, K Kirby… - … Workshop on Machine …, 2023 - Springer
Joint decomposition of functional magnetic resonance imaging (fMRI) time series into time
courses of neural activity events and hemodynamic response functions (HRF) can enable …

Mixture components inference for sparse regression: introduction and application for estimation of neuronal signal from fMRI BOLD

A Pidnebesna, I Fajnerova, J Horáček… - Applied Mathematical …, 2023 - Elsevier
Sparse linear regression methods including the well-known LASSO and the Dantzig selector
have become ubiquitous in the engineering practice, including in medical imaging. Among …

BRAD: Software for BRain Activity Detection from hemodynamic response

A Pidnebesna, D Tomeček, J Hlinka - Computer Methods and Programs in …, 2018 - Elsevier
Background and objective: Precise estimation of neuronal activity from neuroimaging data is
one of the central challenges of the application of noninvasive neuroimaging methods. One …

Arend WA Van Gemmert¹, Lydia Bazzano, and Owen T. Carmichael2 D 1 Louisiana State University, Baton Rouge, LA, USA kchuan1@ lsu. edu 2 Pennington …

KC Chuang, S Ramakrishnapillai¹… - Machine Learning in …, 2023 - books.google.com
Joint decomposition of functional magnetic resonance imaging (fMRI) time series into time
courses of neural activity events and hemodynamic response functions (HRF) can enable …

Estimating sparse neuronal signal from hemodynamic response: the mixture components inference approach

A Pidnebesna, I Fajnerová, J Horáček, J Hlinka - bioRxiv, 2019 - biorxiv.org
The approximate knowledge of the hemodynamic response to neuronal activity is widely
used in statistical testing of effects of external stimulation, but has also been applied to …

autohrf-an R package for generating data-informed event models for general linear modeling of task-based fMRI data

N Purg, J Demšar, A Anticevic, G Repovš - Frontiers in neuroimaging, 2022 - frontiersin.org
The analysis of task-related fMRI data at the level of individual participants is commonly
based on general linear modeling (GLM), which allows us to estimate the extent to which the …

Robust brain state decoding using bidirectional long short term memory networks in functional MRI

A Mittal, P Aggarwal, L Pessoa, A Gupta - Proceedings of the Twelfth …, 2021 - dl.acm.org
Decoding brain states of the underlying cognitive processes via learning discriminative
feature representations has recently gained a lot of interest in brain imaging studies …

Statistická analýza časoprostorových procesů

P Anna - 2020 - dspace.cvut.cz
Tato disertační práce se zabývá časoprostorovými procesy a jejich aplikacemi na dva reálné
problémy. Prvním z nich je proces korespondence mezi úřady a soukromými osobami …

Statistical Analysis of the Spatiotemporal Processes

A Pidnebesna - 2020 - search.proquest.com
Tato disertační práce se zabývá časoprostorovými procesy a jejich aplikacemi na dva reálné
problémy. Prvním z nich je proces korespondence mezi úřady a soukromými os-obami …

[PDF][PDF] BRAD: software for BRain Activity Detection from hemodynamic

A Pidnebesna, D Tomecek, J Hlinka - 2017 - academia.edu
Abstract Background and Objective: Precise estimation of neuronal activity from
neuroimaging data is one of the central challenges of the application of noninvasive …