Artificial intelligence in medicine and research–the good, the bad, and the ugly

V Grech, S Cuschieri, AA Eldawlatly - Saudi Journal of …, 2023 - journals.lww.com
Artificial intelligence (AI) broadly refers to machines that simulate intelligent human
behavior, and research into this field is exponential and worldwide, with global players such …

Artificial intelligence in thyroidology: a narrative review of the current applications, associated challenges, and future directions

D Toro-Tobon, R Loor-Torres, M Duran, JW Fan… - Thyroid, 2023 - liebertpub.com
Background: The use of artificial intelligence (AI) in health care has grown exponentially with
the promise of facilitating biomedical research and enhancing diagnosis, treatment …

Postoperative Karnofsky performance status prediction in patients with IDH wild-type glioblastoma: A multimodal approach integrating clinical and deep imaging …

T Sasagasako, A Ueda, Y Mineharu, Y Mochizuki… - PloS one, 2024 - journals.plos.org
Background and purpose Glioblastoma is a highly aggressive brain tumor with limited
survival that poses challenges in predicting patient outcomes. The Karnofsky Performance …

La regulación legal de la inteligencia artificial en la Unión Europea: guía práctica para radiólogos

ÁM Santos, SL Lendoiro, MR Cañellas, PV Solís - Radiologia, 2024 - Elsevier
Resumen La Unión Europea está liderando a nivel global la regulación legal de la
inteligencia artificial (IA) y desarrollando una importante actividad legislativa, entre la que …

[HTML][HTML] Hepatic encephalopathy post-TIPS: current status and prospects in predictive assessment

X Xu, Y Yang, X Tan, Z Zhang, B Wang, X Yang… - Computational and …, 2024 - Elsevier
Transjugular intrahepatic portosystemic shunt (TIPS) is an essential procedure for the
treatment of portal hypertension but can result in hepatic encephalopathy (HE), a serious …

A Radiomic “Warning Sign” of Progression on Brain MRI in Individuals with MS

BS Kelly, P Mathur, G McGuinness… - American Journal …, 2024 - Am Soc Neuroradiology
BACKGROUND AND PURPOSE: MS is a chronic progressive, idiopathic, demyelinating
disorder whose diagnosis is contingent on the interpretation of MR imaging. New MR …

Cultivating diagnostic clarity: The importance of reporting artificial intelligence confidence levels in radiologic diagnoses

M Fathi, K Vakili, R Hajibeygi, A Bahrami, S Behzad… - Clinical Imaging, 2024 - Elsevier
Accurate image interpretation is essential in the field of radiology to the healthcare team in
order to provide optimal patient care. This article discusses the use of artificial intelligence …

Empowering Data Sharing in Neuroscience: A Deep Learning De-identification Method for Pediatric Brain MRIs

AM Familiar, N Khalili, N Khalili, C Schuman… - American Journal of …, 2024 - ajnr.org
ABSTRACT BACKGROUND AND PURPOSE: Privacy concerns, such as identifiable facial
features within brain scans, have hindered the availability of pediatric neuroimaging …

[HTML][HTML] iSPAN: Explainable prediction of outcomes post thrombectomy with Machine Learning

BS Kelly, P Mathur, SD Vaca, J Duignan… - European Journal of …, 2024 - Elsevier
Purpose This study aimed to develop and evaluate a machine learning model and a novel
clinical score for predicting outcomes in stroke patients undergoing endovascular …

Automated detection of steno-occlusive lesion on time-of-flight magnetic resonance angiography: an observer performance study

H Lim, D Choi, L Sunwoo, JH Jung… - American Journal …, 2024 - Am Soc Neuroradiology
ABSTRACT BACKGROUND AND PURPOSE: Intracranial steno-occlusive lesions are
responsible for acute ischemic stroke. However, the clinical benefits of artificial intelligence …