Generalized out-of-distribution detection: A survey

J Yang, K Zhou, Y Li, Z Liu - International Journal of Computer Vision, 2024 - Springer
Abstract Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of
machine learning systems. For instance, in autonomous driving, we would like the driving …

Delving into out-of-distribution detection with vision-language representations

Y Ming, Z Cai, J Gu, Y Sun, W Li… - Advances in neural …, 2022 - proceedings.neurips.cc
Recognizing out-of-distribution (OOD) samples is critical for machine learning systems
deployed in the open world. The vast majority of OOD detection methods are driven by a …

Dream the impossible: Outlier imagination with diffusion models

X Du, Y Sun, J Zhu, Y Li - Advances in Neural Information …, 2024 - proceedings.neurips.cc
Utilizing auxiliary outlier datasets to regularize the machine learning model has
demonstrated promise for out-of-distribution (OOD) detection and safe prediction. Due to the …

FedFed: Feature distillation against data heterogeneity in federated learning

Z Yang, Y Zhang, Y Zheng, X Tian… - Advances in …, 2024 - proceedings.neurips.cc
Federated learning (FL) typically faces data heterogeneity, ie, distribution shifting among
clients. Sharing clients' information has shown great potentiality in mitigating data …

Federated incremental semantic segmentation

J Dong, D Zhang, Y Cong, W Cong… - Proceedings of the …, 2023 - openaccess.thecvf.com
Federated learning-based semantic segmentation (FSS) has drawn widespread attention
via decentralized training on local clients. However, most FSS models assume categories …

Provable dynamic fusion for low-quality multimodal data

Q Zhang, H Wu, C Zhang, Q Hu, H Fu… - International …, 2023 - proceedings.mlr.press
The inherent challenge of multimodal fusion is to precisely capture the cross-modal
correlation and flexibly conduct cross-modal interaction. To fully release the value of each …

Learning to augment distributions for out-of-distribution detection

Q Wang, Z Fang, Y Zhang, F Liu… - Advances in Neural …, 2024 - proceedings.neurips.cc
Open-world classification systems should discern out-of-distribution (OOD) data whose
labels deviate from those of in-distribution (ID) cases, motivating recent studies in OOD …

Heterogeneous forgetting compensation for class-incremental learning

J Dong, W Liang, Y Cong… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Class-incremental learning (CIL) has achieved remarkable successes in learning new
classes consecutively while overcoming catastrophic forgetting on old categories. However …

Unsupervised layer-wise score aggregation for textual ood detection

M Darrin, G Staerman, EDC Gomes… - Proceedings of the …, 2024 - ojs.aaai.org
Abstract Out-of-distribution (OOD) detection is a rapidly growing field due to new robustness
and security requirements driven by an increased number of AI-based systems. Existing …

Out-of-distribution detection learning with unreliable out-of-distribution sources

H Zheng, Q Wang, Z Fang, X Xia… - Advances in Neural …, 2023 - proceedings.neurips.cc
Abstract Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot
make valid predictions as in-distribution (ID) data, thereby increasing the reliability of open …