Exploration in deep reinforcement learning: A survey
This paper reviews exploration techniques in deep reinforcement learning. Exploration
techniques are of primary importance when solving sparse reward problems. In sparse …
techniques are of primary importance when solving sparse reward problems. In sparse …
A social path to human-like artificial intelligence
EA Duéñez-Guzmán, S Sadedin, JX Wang… - Nature Machine …, 2023 - nature.com
Traditionally, cognitive and computer scientists have viewed intelligence solipsistically, as a
property of unitary agents devoid of social context. Given the success of contemporary …
property of unitary agents devoid of social context. Given the success of contemporary …
Guiding pretraining in reinforcement learning with large language models
Reinforcement learning algorithms typically struggle in the absence of a dense, well-shaped
reward function. Intrinsically motivated exploration methods address this limitation by …
reward function. Intrinsically motivated exploration methods address this limitation by …
A survey of meta-reinforcement learning
While deep reinforcement learning (RL) has fueled multiple high-profile successes in
machine learning, it is held back from more widespread adoption by its often poor data …
machine learning, it is held back from more widespread adoption by its often poor data …
Simulation intelligence: Towards a new generation of scientific methods
The original" Seven Motifs" set forth a roadmap of essential methods for the field of scientific
computing, where a motif is an algorithmic method that captures a pattern of computation …
computing, where a motif is an algorithmic method that captures a pattern of computation …
Reinforcement learning for optimization of variational quantum circuit architectures
M Ostaszewski, LM Trenkwalder… - Advances in …, 2021 - proceedings.neurips.cc
Abstract The study of Variational Quantum Eigensolvers (VQEs) has been in the spotlight in
recent times as they may lead to real-world applications of near-term quantum devices …
recent times as they may lead to real-world applications of near-term quantum devices …
Maximize to explore: One objective function fusing estimation, planning, and exploration
In reinforcement learning (RL), balancing exploration and exploitation is crucial for
achieving an optimal policy in a sample-efficient way. To this end, existing sample-efficient …
achieving an optimal policy in a sample-efficient way. To this end, existing sample-efficient …
Deep learning in electron microscopy
JM Ede - Machine Learning: Science and Technology, 2021 - iopscience.iop.org
Deep learning is transforming most areas of science and technology, including electron
microscopy. This review paper offers a practical perspective aimed at developers with …
microscopy. This review paper offers a practical perspective aimed at developers with …
Optimal tracking control of nonlinear multiagent systems using internal reinforce Q-learning
In this article, a novel reinforcement learning (RL) method is developed to solve the optimal
tracking control problem of unknown nonlinear multiagent systems (MASs). Different from …
tracking control problem of unknown nonlinear multiagent systems (MASs). Different from …
Exploration in deep reinforcement learning: From single-agent to multiagent domain
Deep reinforcement learning (DRL) and deep multiagent reinforcement learning (MARL)
have achieved significant success across a wide range of domains, including game artificial …
have achieved significant success across a wide range of domains, including game artificial …