A comprehensive survey on pretrained foundation models: A history from bert to chatgpt

C Zhou, Q Li, C Li, J Yu, Y Liu, G Wang… - International Journal of …, 2024 - Springer
Abstract Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …

Challenges and applications of large language models

J Kaddour, J Harris, M Mozes, H Bradley… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) went from non-existent to ubiquitous in the machine
learning discourse within a few years. Due to the fast pace of the field, it is difficult to identify …

Judging llm-as-a-judge with mt-bench and chatbot arena

L Zheng, WL Chiang, Y Sheng… - Advances in …, 2023 - proceedings.neurips.cc
Evaluating large language model (LLM) based chat assistants is challenging due to their
broad capabilities and the inadequacy of existing benchmarks in measuring human …

A survey of large language models

WX Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou… - arXiv preprint arXiv …, 2023 - arxiv.org
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …

Direct preference optimization: Your language model is secretly a reward model

R Rafailov, A Sharma, E Mitchell… - Advances in …, 2024 - proceedings.neurips.cc
While large-scale unsupervised language models (LMs) learn broad world knowledge and
some reasoning skills, achieving precise control of their behavior is difficult due to the …

Lima: Less is more for alignment

C Zhou, P Liu, P Xu, S Iyer, J Sun… - Advances in …, 2024 - proceedings.neurips.cc
Large language models are trained in two stages:(1) unsupervised pretraining from raw text,
to learn general-purpose representations, and (2) large scale instruction tuning and …

The flan collection: Designing data and methods for effective instruction tuning

S Longpre, L Hou, T Vu, A Webson… - International …, 2023 - proceedings.mlr.press
We study the design decision of publicly available instruction tuning methods, by
reproducing and breaking down the development of Flan 2022 (Chung et al., 2022) …

Alpacafarm: A simulation framework for methods that learn from human feedback

Y Dubois, CX Li, R Taori, T Zhang… - Advances in …, 2024 - proceedings.neurips.cc
Large language models (LLMs) such as ChatGPT have seen widespread adoption due to
their ability to follow user instructions well. Developing these LLMs involves a complex yet …

Camel: Communicative agents for" mind" exploration of large language model society

G Li, H Hammoud, H Itani… - Advances in Neural …, 2023 - proceedings.neurips.cc
The rapid advancement of chat-based language models has led to remarkable progress in
complex task-solving. However, their success heavily relies on human input to guide the …

Is ChatGPT a general-purpose natural language processing task solver?

C Qin, A Zhang, Z Zhang, J Chen, M Yasunaga… - arXiv preprint arXiv …, 2023 - arxiv.org
Spurred by advancements in scale, large language models (LLMs) have demonstrated the
ability to perform a variety of natural language processing (NLP) tasks zero-shot--ie, without …