Dirac structures and Nijenhuis operators

H Bursztyn, T Drummond, C Netto - Mathematische Zeitschrift, 2022 - Springer
We introduce a notion of compatibility between (almost) Dirac structures and (1, 1)-tensor
fields extending that of Poisson–Nijenhuis structures. We study several properties of the …

Brane quantization of toric Poisson varieties

F Bischoff, M Gualtieri - Communications in Mathematical Physics, 2022 - Springer
In this paper we propose a noncommutative generalization of the relationship between
compact Kähler manifolds and complex projective algebraic varieties. Beginning with a …

The graph groupoid of a quantum sphere

F D'Andrea - arXiv preprint arXiv:2407.02169, 2024 - arxiv.org
Quantum spheres are among the most studied examples of compact quantum spaces,
described by C*-algebras which are Cuntz-Krieger algebras of a directed graph, as proved …

Dirac geometry and integration of Poisson homogeneous spaces

H Bursztyn, D Iglesias-Ponte, JH Lu - Journal of Differential …, 2024 - projecteuclid.org
Using tools from Dirac geometry and through an explicit construction, we show that every
Poisson homogeneous space of any Poisson Lie group admits an integration to a symplectic …

Nijenhuis tensor and invariant polynomials

F Bonechi, J Qiu, M Tarlini, E Viviani - Journal of Geometry and Physics, 2022 - Elsevier
We discuss the diagonalization problem of the Nijenhuis tensor in a class of Poisson-
Nijenhuis structures defined on compact hermitian symmetric spaces. We study its action on …

Dirac geometry and integration of Poisson homogeneous spaces

H Bursztyn, D Iglesias-Ponte, JH Lu - arXiv preprint arXiv:1905.11453, 2019 - arxiv.org
Using tools from Dirac geometry and through an explicit construction, we show that every
Poisson homogeneous space of any Poisson Lie group admits an integration to a symplectic …

Multiplicative integrable models from Poisson-Nijenhuis structures

F Bonechi - arXiv preprint arXiv:1507.01500, 2015 - arxiv.org
We discuss the role of Poisson-Nijenhuis geometry in the definition of multiplicative
integrable models on symplectic groupoids. These are integrable models that are …

Complete integrability from Poisson-Nijenhuis structures on compact hermitian symmetric spaces

F Bonechi, J Qiu, M Tarlini - arXiv preprint arXiv:1503.07339, 2015 - arxiv.org
We study a class of Poisson-Nijenhuis systems defined on compact hermitian symmetric
spaces, where the Nijenhuis tensor is defined as the composition of Kirillov-Konstant …

Bohr-Sommerfeld quantization of -symplectic toric manifolds

P Mir, E Miranda, J Weitsman - arXiv preprint arXiv:2203.03340, 2022 - arxiv.org
We define the Bohr-Sommerfeld quantization via $ T $-modules for a $ b $-symplectic toric
manifold and show that it coincides with the formal geometric quantization of [GMW18b]. In …

Quantum orbit method in the presence of symmetries

N Ciccoli - Symmetry, 2021 - mdpi.com
We review some of the main achievements of the orbit method, when applied to Poisson–Lie
groups and Poisson homogeneous spaces or spaces with an invariant Poisson structure …