Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

A survey on federated learning for resource-constrained IoT devices

A Imteaj, U Thakker, S Wang, J Li… - IEEE Internet of Things …, 2021 - ieeexplore.ieee.org
Federated learning (FL) is a distributed machine learning strategy that generates a global
model by learning from multiple decentralized edge clients. FL enables on-device training …

Federated learning on non-IID data: A survey

H Zhu, J Xu, S Liu, Y Jin - Neurocomputing, 2021 - Elsevier
Federated learning is an emerging distributed machine learning framework for privacy
preservation. However, models trained in federated learning usually have worse …

A survey on federated learning

C Zhang, Y Xie, H Bai, B Yu, W Li, Y Gao - Knowledge-Based Systems, 2021 - Elsevier
Federated learning is a set-up in which multiple clients collaborate to solve machine
learning problems, which is under the coordination of a central aggregator. This setting also …

Distributed learning in wireless networks: Recent progress and future challenges

M Chen, D Gündüz, K Huang, W Saad… - IEEE Journal on …, 2021 - ieeexplore.ieee.org
The next-generation of wireless networks will enable many machine learning (ML) tools and
applications to efficiently analyze various types of data collected by edge devices for …

A survey on security and privacy of federated learning

V Mothukuri, RM Parizi, S Pouriyeh, Y Huang… - Future Generation …, 2021 - Elsevier
Federated learning (FL) is a new breed of Artificial Intelligence (AI) that builds upon
decentralized data and training that brings learning to the edge or directly on-device. FL is a …

Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems

OA Wahab, A Mourad, H Otrok… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The communication and networking field is hungry for machine learning decision-making
solutions to replace the traditional model-driven approaches that proved to be not rich …

Communication-efficient federated learning via knowledge distillation

C Wu, F Wu, L Lyu, Y Huang, X Xie - Nature communications, 2022 - nature.com
Federated learning is a privacy-preserving machine learning technique to train intelligent
models from decentralized data, which enables exploiting private data by communicating …

A survey on federated learning: The journey from centralized to distributed on-site learning and beyond

S AbdulRahman, H Tout… - IEEE Internet of …, 2020 - ieeexplore.ieee.org
Driven by privacy concerns and the visions of deep learning, the last four years have
witnessed a paradigm shift in the applicability mechanism of machine learning (ML). An …

Federated learning: A survey on enabling technologies, protocols, and applications

M Aledhari, R Razzak, RM Parizi, F Saeed - IEEE Access, 2020 - ieeexplore.ieee.org
This paper provides a comprehensive study of Federated Learning (FL) with an emphasis
on enabling software and hardware platforms, protocols, real-life applications and use …