Review the state-of-the-art technologies of semantic segmentation based on deep learning

Y Mo, Y Wu, X Yang, F Liu, Y Liao - Neurocomputing, 2022 - Elsevier
The goal of semantic segmentation is to segment the input image according to semantic
information and predict the semantic category of each pixel from a given label set. With the …

A brief survey on semantic segmentation with deep learning

S Hao, Y Zhou, Y Guo - Neurocomputing, 2020 - Elsevier
Semantic segmentation is a challenging task in computer vision. In recent years, the
performance of semantic segmentation has been greatly improved by using deep learning …

Dtfd-mil: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification

H Zhang, Y Meng, Y Zhao, Y Qiao… - Proceedings of the …, 2022 - openaccess.thecvf.com
Multiple instance learning (MIL) has been increasingly used in the classification of
histopathology whole slide images (WSIs). However, MIL approaches for this specific …

Scaling open-vocabulary image segmentation with image-level labels

G Ghiasi, X Gu, Y Cui, TY Lin - European Conference on Computer Vision, 2022 - Springer
We design an open-vocabulary image segmentation model to organize an image into
meaningful regions indicated by arbitrary texts. Recent works (CLIP and ALIGN), despite …

Learning affinity from attention: End-to-end weakly-supervised semantic segmentation with transformers

L Ru, Y Zhan, B Yu, B Du - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Weakly-supervised semantic segmentation (WSSS) with image-level labels is an important
and challenging task. Due to the high training efficiency, end-to-end solutions for WSSS …

Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning

B Li, Y Li, KW Eliceiri - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
We address the challenging problem of whole slide image (WSI) classification. WSIs have
very high resolutions and usually lack localized annotations. WSI classification can be cast …

L2g: A simple local-to-global knowledge transfer framework for weakly supervised semantic segmentation

PT Jiang, Y Yang, Q Hou, Y Wei - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Mining precise class-aware attention maps, aka, class activation maps, is essential for
weakly supervised semantic segmentation. In this paper, we present L2G, a simple online …

Panoptic nerf: 3d-to-2d label transfer for panoptic urban scene segmentation

X Fu, S Zhang, T Chen, Y Lu, L Zhu… - … Conference on 3D …, 2022 - ieeexplore.ieee.org
Large-scale training data with high-quality annotations is critical for training semantic and
instance segmentation models. Unfortunately, pixel-wise annotation is labor-intensive and …

Railroad is not a train: Saliency as pseudo-pixel supervision for weakly supervised semantic segmentation

S Lee, M Lee, J Lee, H Shim - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Existing studies in weakly-supervised semantic segmentation (WSSS) using image-level
weak supervision have several limitations: sparse object coverage, inaccurate object …

Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation

Y Wang, J Zhang, M Kan, S Shan… - Proceedings of the …, 2020 - openaccess.thecvf.com
Image-level weakly supervised semantic segmentation is a challenging problem that has
been deeply studied in recent years. Most of advanced solutions exploit class activation map …