Determinantal polynomials of some weighted shift matrices with palindromic weights

B Chakraborty, S Ojha, R Birbonshi - Annals of Functional Analysis, 2023 - Springer
We obtain an explicit expression of the determinantal polynomials of weighted shift matrices
with palindromic weights ( a , b , a , b , … , a , b , c , b , a , b , a , … , b , a ) , ( a , b , a , b …

Determinantal polynomials of weighted shift matrices with palindromic harmonic weights

B Chakraborty, S Ojha, R Birbonshi - Advances in Operator Theory, 2023 - Springer
In this paper, we explicitly obtain the determinantal polynomials of weighted shift matrices
with palindromic harmonic weights 1 a, 1 a+ h,…, 1 a+(n-3) h, 1 a+(n-2) h, 1 a+(n-3) h,…, 1 …

[PDF][PDF] NUMERICAL RADII OF WEIGHTED SHIFT MATRICES WITH PALINDROMIC WEIGHTS USING DETERMINANTAL POLYNOMIALS

B CHAKRABORTY, S OJHA… - Operators & Matrices, 2023 - files.ele-math.com
In this paper, we formulate the determinantal polynomials of weighted shift matrices with
palindromic weights (a, br, ar2,..., br2n− 3, ar2n− 2, c, ar2n− 2, br2n− 3,..., ar2, br, a),(a, br …