[HTML][HTML] When large language models meet personalization: Perspectives of challenges and opportunities

J Chen, Z Liu, X Huang, C Wu, Q Liu, G Jiang, Y Pu… - World Wide Web, 2024 - Springer
The advent of large language models marks a revolutionary breakthrough in artificial
intelligence. With the unprecedented scale of training and model parameters, the capability …

[HTML][HTML] Advances and challenges in conversational recommender systems: A survey

C Gao, W Lei, X He, M de Rijke, TS Chua - AI open, 2021 - Elsevier
Recommender systems exploit interaction history to estimate user preference, having been
heavily used in a wide range of industry applications. However, static recommendation …

Large language models as zero-shot conversational recommenders

Z He, Z Xie, R Jha, H Steck, D Liang, Y Feng… - Proceedings of the …, 2023 - dl.acm.org
In this paper, we present empirical studies on conversational recommendation tasks using
representative large language models in a zero-shot setting with three primary …

Conversational information seeking

H Zamani, JR Trippas, J Dalton… - … and Trends® in …, 2023 - nowpublishers.com
Conversational information seeking (CIS) is concerned with a sequence of interactions
between one or more users and an information system. Interactions in CIS are primarily …

Personalized prompt learning for explainable recommendation

L Li, Y Zhang, L Chen - ACM Transactions on Information Systems, 2023 - dl.acm.org
Providing user-understandable explanations to justify recommendations could help users
better understand the recommended items, increase the system's ease of use, and gain …

A survey on conversational recommender systems

D Jannach, A Manzoor, W Cai, L Chen - ACM Computing Surveys …, 2021 - dl.acm.org
Recommender systems are software applications that help users to find items of interest in
situations of information overload. Current research often assumes a one-shot interaction …

Towards unified conversational recommender systems via knowledge-enhanced prompt learning

X Wang, K Zhou, JR Wen, WX Zhao - Proceedings of the 28th ACM …, 2022 - dl.acm.org
Conversational recommender systems (CRS) aim to proactively elicit user preference and
recommend high-quality items through natural language conversations. Typically, a CRS …

Interactive path reasoning on graph for conversational recommendation

W Lei, G Zhang, X He, Y Miao, X Wang… - Proceedings of the 26th …, 2020 - dl.acm.org
Traditional recommendation systems estimate user preference on items from past interaction
history, thus suffering from the limitations of obtaining fine-grained and dynamic user …

Leveraging large language models in conversational recommender systems

L Friedman, S Ahuja, D Allen, Z Tan… - arXiv preprint arXiv …, 2023 - arxiv.org
A Conversational Recommender System (CRS) offers increased transparency and control to
users by enabling them to engage with the system through a real-time multi-turn dialogue …

Rethinking the evaluation for conversational recommendation in the era of large language models

X Wang, X Tang, WX Zhao, J Wang, JR Wen - arXiv preprint arXiv …, 2023 - arxiv.org
The recent success of large language models (LLMs) has shown great potential to develop
more powerful conversational recommender systems (CRSs), which rely on natural …