LS-DYNA machine learning–based multiscale method for nonlinear modeling of short fiber–reinforced composites

H Wei, CT Wu, W Hu, TH Su, H Oura… - Journal of …, 2023 - ascelibrary.org
Short fiber–reinforced composites (SFRCs) are high-performance engineering materials for
lightweight structural applications in the automotive and electronics industries. Typically …

Graph-enhanced deep material network: multiscale materials modeling with microstructural informatics

JG Jean, TH Su, SJ Huang, CT Wu, CS Chen - Computational Mechanics, 2024 - Springer
This study addresses the fundamental challenge of extending the deep material network
(DMN) to accommodate multiple microstructures. DMN has gained significant attention due …

RVE analysis in LS-DYNA for high-fidelity multiscale material modeling

H Wei, D Lyu, W Hu, CT Wu - arXiv preprint arXiv:2210.11761, 2022 - arxiv.org
In modern engineering designs, advanced materials (eg, fiber/particle-reinforced polymers,
metallic alloys, laminar composites, etc.) are widely used, where microscale heterogeneities …

機械学習を用いた短繊維強化複合材料のマルチスケール解析

大浦仁志, 西正人, 王俊翔, 内藤正志 - 計算力学講演会講演論文集 …, 2022 - jstage.jst.go.jp
抄録 A new data-driven multi-scale material modeling method called Deep Material Network
(DMN), based on the Representative Volume Element (RVE) method and machine learning …