An FPGA-based multi-agent reinforcement learning timing synchronizer

GC Cardarilli, L Di Nunzio, R Fazzolari… - Computers and …, 2022 - Elsevier
In this paper we propose a Timing Recovery Loop for PSK and QAM modulations based on
swarm Reinforcement Learning, suitable for FPGA implementation. We apply the Q-RTS …

Training Machine Learning models at the Edge: A Survey

AR Khouas, MR Bouadjenek, H Hacid… - arXiv preprint arXiv …, 2024 - arxiv.org
Edge Computing (EC) has gained significant traction in recent years, promising enhanced
efficiency by integrating Artificial Intelligence (AI) capabilities at the edge. While the focus …

Self-learning pipeline for low-energy resource-constrained devices

F Sakr, R Berta, J Doyle, A De Gloria, F Bellotti - Energies, 2021 - mdpi.com
The trend of bringing machine learning (ML) to the Internet of Things (IoT) field devices is
becoming ever more relevant, also reducing the overall energy need of the applications. ML …

Платформы на основе микроконтроллеров для обучения детей

ДС Хлустиков - Инновации. Наука. Образование, 2021 - elibrary.ru
В статье рассматриваются различные платформы на основе микроконтроллеров для
обучения детей. Также приводится сравнение сред разработки для этих платформ и …