Hierarchical reinforcement learning: A comprehensive survey
Hierarchical Reinforcement Learning (HRL) enables autonomous decomposition of
challenging long-horizon decision-making tasks into simpler subtasks. During the past …
challenging long-horizon decision-making tasks into simpler subtasks. During the past …
Soft pneumatic actuators: A review of design, fabrication, modeling, sensing, control and applications
Soft robotics is a rapidly evolving field where robots are fabricated using highly deformable
materials and usually follow a bioinspired design. Their high dexterity and safety make them …
materials and usually follow a bioinspired design. Their high dexterity and safety make them …
Multi-agent deep reinforcement learning: a survey
S Gronauer, K Diepold - Artificial Intelligence Review, 2022 - Springer
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
Dota 2 with large scale deep reinforcement learning
C Berner, G Brockman, B Chan, V Cheung… - arXiv preprint arXiv …, 2019 - arxiv.org
On April 13th, 2019, OpenAI Five became the first AI system to defeat the world champions
at an esports game. The game of Dota 2 presents novel challenges for AI systems such as …
at an esports game. The game of Dota 2 presents novel challenges for AI systems such as …
Towards continual reinforcement learning: A review and perspectives
In this article, we aim to provide a literature review of different formulations and approaches
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …
Emergent tool use from multi-agent autocurricula
Through multi-agent competition, the simple objective of hide-and-seek, and standard
reinforcement learning algorithms at scale, we find that agents create a self-supervised …
reinforcement learning algorithms at scale, we find that agents create a self-supervised …
Curriculum learning for reinforcement learning domains: A framework and survey
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks
in which the agent has only limited environmental feedback. Despite many advances over …
in which the agent has only limited environmental feedback. Despite many advances over …
A survey on deep reinforcement learning algorithms for robotic manipulation
Robotic manipulation challenges, such as grasping and object manipulation, have been
tackled successfully with the help of deep reinforcement learning systems. We give an …
tackled successfully with the help of deep reinforcement learning systems. We give an …
Exploration by random network distillation
We introduce an exploration bonus for deep reinforcement learning methods that is easy to
implement and adds minimal overhead to the computation performed. The bonus is the error …
implement and adds minimal overhead to the computation performed. The bonus is the error …
Evolving curricula with regret-based environment design
Training generally-capable agents with reinforcement learning (RL) remains a significant
challenge. A promising avenue for improving the robustness of RL agents is through the use …
challenge. A promising avenue for improving the robustness of RL agents is through the use …